
Model AD12-8
Product Manual

MANUAL NUMBER : 00650-014-4B

6260 SEQUENCE DRIVE, SAN DIEGO, CA 92121-4371 (619) 677-0877 (FAX) 619-677-0895
INDUSTRIAL COMPUTER SOURCE EUROPE TEL 01.69.18.74.40 FAX 01.64.46.40.42 • INDUSTRIAL COMPUTER SOURCE (UK) LTD TEL 01243-523500 FAX 01243-532949

http:/www.indcompsrc.com

Page - ii

Page - iii

FOREWARD

This product manual provides information to install, operate and or program the referenced product(s)
manufactured or distributed by Industrial Computer Source. The following pages contain information
regarding the warranty and repair policies.

Technical assistance is available at: 1-800-480-0044.

Manual Errors, Omissions and Bugs: A "Bug Sheet" is included as the last page of this manual. Please
use the "Bug Sheet" if you experience any problems with the manual that requires correction.

The information in this document is provided for reference only. Industrial Computer Source does not
assume any liability arising out of the application or use of the information or products described herein.
This document may contain or reference information and products protected by copyrights or patents and
does not convey any license under the patent rights of Industrial Computer Source, nor the rights of others.

Copyright © 1996 by Industrial Computer Source, a California Corporation, 6260 Sequence Drive, San
Diego, CA 92121-4371. Industrial Computer Source is a Registered Trademark of Industrial Computer
Source. All trademarks and registered trademarks are the property of their respective owners. All rights
reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording , or otherwise, without the prior written permission of the publisher.

Page - iv

Guarantee

A thirty day money-back guarantee is provided on all standard products sold. Special order products are
covered by our Limited Warranty, however they may not be returned for refund or credit. EPROMs, RAM,
Flash EPROMs or other forms of solid electronic media are not returnable for credit - but for replacement
only. Extended Warranty available. Consult factory.

Refunds
In order to receive refund on a product purchase price, the product must not have been damaged by
the customer or by the common carrier chosen by the customer to return the goods, and the product
must be returned complete (meaning all manuals, software, cables, etc.) within 30 days of receipt
and in as-new and resalable condition. The Return Procedure must be followed to assure prompt
refund.

Restocking Charges
Product returned after 30 days, and before 90 days, of the purchase will be subject to a minimum
20% restocking charge and any charges for damaged or missing parts.

Products not returned within 90 days of purchase, or products which are not in as-new and re-
saleable condition, are not eligible for credit return and will be returned to the customer.

Limited Warranty

One year limited warranty on all products sold with the exception of the “Performance Series” I/O prod-
ucts, which are warranted to the original purchaser, for as long as they own the product, subject to all other
conditions below, including those regarding neglect, misuse and acts of God. Within one year of purchase,
Industrial Computer Source will repair or replace, at our option, any defective product. At any time after
one year, we will repair or replace, at our option, any defective “Performance Series” I/O product sold.
This does not include products damaged in shipment, or damaged through customer neglect or misuse.
Industrial Computer Source will service the warranty for all standard catalog products for the first year
from the date of shipment. After the first year, for products not manufactured by Industrial Computer
Source, the remainder of the manufacturer's warranty, if any, will be serviced by the manufacturer directly.

The Return Procedure must be followed to assure repair or replacement. Industrial Computer
Source will normally return your replacement or repaired item via UPS Blue. Overnight delivery or
delivery via other carriers is available at additional charge.

The limited warranty is void if the product has been subjected to alteration, neglect, misuse, or
abuse; if any repairs have been attempted by anyone other than Industrial Computer Source or its
authorized agent; or if the failure is caused by accident, acts of God, or other causes beyond the
control of Industrial Computer Source or the manufacturer. Neglect, misuse, and abuse shall include
any installation, operation, or maintenance of the product other than in accordance with the owners’
manual.

No agent, dealer, distributor, service company, or other party is authorized to change, modify, or
extend the terms of this Limited Warranty in any manner whatsoever. Industrial Computer Source
reserves the right to make changes or improvements in any product without incurring any obligation
to similarly alter products previously purchased.

Shipments not in compliance with this Guarantee and
Limited Warranty Return Policy will not be accepted
by Industrial Computer Source.

®

Page - v

Return Procedure

For any Limited Warranty or Guarantee return, please contact Industrial Computer Source's Customer
Service at 1-800-480-0044 and obtain a Return Material Authorization (RMA) Number. All product(s)
returned to Industrial Computer Source for service or credit must be accompanied by a Return Material
Authorization (RMA) Number. Freight on all returned items must be prepaid by the customer who is
responsible for any loss or damage caused by common carrier in transit. Returns for Warranty must in-
clude a Failure Report for each unit, by serial number(s), as well as a copy of the original invoice showing
date of purchase.

To reduce risk of damage, returns of product must be in an Industrial Computer Source shipping
container. If the original container has been lost or damaged, new shipping containers may be
obtained from Industrial Computer Source Customer Service at a nominal cost.

Limitation of Liability

In no event shall Industrial Computer Source be liable for any defect in hardware or software or loss or
inadequacy of data of any kind, or for any direct, indirect, incidental, or consequential damages in connec-
tion with or arising out of the performance or use of any product furnished hereunder. Industrial Computer
Source liability shall in no event exceed the purchase price of the product purchased hereunder. The
foregoing limitation of liability shall be equally applicable to any service provided by Industrial Computer
Source or its authorized agent.

Some Sales Items and Customized Systems are not subject to the guarantee and limited warranty. However
in these instances , any deviations will be disclosed prior to sales and noted in the original invoice. Indus-
trial Computer Source reserves the right to refuse returns or credits on software or special order items.

Page - vi

Advisories

Three types of advisories are used throughout the manual to stress important points or warn of potential
hazards to the user or the system. They are the Note, the Caution, and the Warning. Following is an
example of each type of advisory:

Note: The note is used to present information which may provide special instruction or extra
information which may help to simplify the use of the product.

 CAUTION!

A Caution is used to alert you of a situation which if ignored may cause injury or
damage equipment.

 WARNING!

A Warning is used to alert you of a situation which if ignored will cause serious
injury.

Cautions and Warnings are accented with triangular symbols. The excalmation symbol is used in all cau-
tions and warnings to help alert you to the important instructions. The lightning flash symbol is used on the
left hand side of a caution or a warning if the advisory relates to the presence of voltage which may be of
sufficient magnitude to cause electrical shock.

Use caution when servicing any electrical component. We have tried to identify the areas which may pose
a Caution or Warning condition in this manual; however, Industrial Computer Source does not claim to
have covered all situations which might require the use of a Caution or Warning.

You must refer to the documentation for any component you install into a computer system to insure proper
precautions and procedures are followed.

Page - vii

Table of Contents
FOREWARD .. iii
Guarantee ... iv
Limited Warranty .. iv
Return Procedure .. v
Limitation of Liability .. v
Advisories ... vi

Chapter 1: Functional Description ...1-1
Analog Inputs .. 1-1

Input System Expansion.. 1-1

Discrete Digital I/O .. 1-1

Reference Voltage Output ... 1-1

Counter/Timer ... 1-2

Interrupts ... 1-2

Utility Software .. 1-2

Enhancements .. 1-3

Specifications .. 1-5

Analog Inputs ... 1-5

Reference Voltage Output .. 1-5

Digital I/O.. 1-5

Interrupt Channel .. 1-5

Programmable Timer.. 1-6

Environmental .. 1-6

How to remain CE Compliant .. 1-6

Chapter 2: Software ..2-1
Software Provided ... 2-1

Backing up the Master Diskettes ... 2-1

Hard Disk Installation .. 2-2

Configuration File .. 2-2

Base Address ... 2-3

Mux Extensions .. 2-3

Voltage Range .. 2-4

Bipolar/Unipolar Mode .. 2-4

IRQ Level ... 2-4

Example ... 2-5

VisualBasic Utility Driver... 2-5

Chapter 3: Hardware Configuation and Installation ...3-1
Option Selection .. 3-1

Analog Input Ranges .. 3-1

Counter/Timer .. 3-1

A/D Conversion Start .. 3-2

Page - viii

Interrupts .. 3-2

Digital I/O.. 3-2

Selecting and Setting the Base Address ... 3-3

Selecting a Base Address .. 3-3

Setting the Base Address ... 3-3

Using the Setup Program to Set the Base Address ... 3-4

Installing the AD12-8 Card .. 3-4

Calibration and Test .. 3-5

Calibration Procedure ... 3-5

Chapter 4: Programming the AD12-8...4-1
AD12-8 Register Address Map.. 4-1

Register Definitions ... 4-1

Control Registers .. 4-1

Status Register ... 4-2

A/D Registers ... 4-3

Digital I/O.. 4-3

Counter/Timer Registers .. 4-4

Programming Using the Drivers .. 4-6

Using the Driver with Turbo or Borland C ... 4-7

Using the Driver with Microsoft C ... 4-7

Using the Driver with Turbo Pascal .. 4-8

Using the Driver with QuickBASIC ... 4-8

Using the Driver with BASIC ... 4-9

Chapter 5: AD12-8 Driver Reference.. 5-1
Using the Driver .. 5-1

The Point List Concept ... 5-1

Other Software Features .. 5-1

Task Summary .. 5-2

Task Reference ... 5-2

Task 0: Initialize ... 5-2

Task 1: Check A/D Operations .. 5-4

Task 2: Fetch Gain Code for a Point Address ... 5-4

Task 3: Fetch Point Address for a Point List Index .. 5-5

Task 4: Assign Gain Code to Range of Point Addresses .. 5-5

Task 5: Assign Point Addresses to the Point List .. 5-7

Task 6: Fetch Data from a Point Address .. 5-8

Task 7: Fetch Data from Next Point Address in List .. 5-8

Task 8: Fetch Multiple Buffered Conversions .. 5-9

Task 9: Interrupt Driven Data Acquisition .. 5-10

Task 10: Thermocouple/Function Assignment .. 5-12

Task 11: Reset Functions .. 5-15

Task 12: Digital Output ... 5-16

Page - ix

Task 13: Digital Input .. 5-16

Task 14: Counter/Timer Setup .. 5-17

Task 15: Read Counter/Timer Count .. 5-18

Task 16: High Speed Conversions, Single Point Address ... 5-18

Task 17: High Speed Conversions, Multiple Point Addresses ... 5-19

Summary of Error Codes .. 5-21

Chapter 6: AD12-8 Windows Driver Reference ...6-1
Driver Features ... 6-1

Using the Driver .. 6-1

Task Summary .. 6-3

Task Reference ... 6-3

AD128_Init .. 6-3

AD128_Shutdown... 6-4

AD128_SetPointConfig... 6-4

AD128_FetchPointConfig ... 6-6

AD128_AddPoints .. 6-7

AD128_ResetListIndex ... 6-7

AD128_ClearPointList .. 6-7

AD128_DelPtListIndexes.. 6-8

AD128_SetSettleTime .. 6-8

AD128_GetNextPoint ... 6-8

AD128_GetIndexPoint .. 6-9

AD128_GetDirectPoint ... 6-9

AD128_IRQTerminate .. 6-10

AD128_IRQStatus .. 6-10

AD128_IRQScan .. 6-10

AD128_PollScan .. 6-11

AD128_PostProcess .. 6-12

AD128_FetchLastGain ... 6-13

AD128_DigitalOut ... 6-13

AD128_DigitalIn.. 6-14

AD128_SetCounter .. 6-14

AD128_ReadCounter ... 6-15

AD128_RateGenerator ... 6-15

AD128_DisableCounter .. 6-15

AD128_MeasureFreq ... 6-16

AD128_MeasurePeriod .. 6-16

Summary of Error Codes .. 6-16

Chapter 7: A/D Converter Applications ...7-1
Connecting Analog Inputs ... 7-1

Comments on Noise Interference ... 7-1

Input Range and Resolution Specifications ... 7-2

Page - x

Current Measurements ... 7-2

Measuring Large Voltages ... 7-2

Adding More Analog Inputs ... 7-2

Precautions - Noise, Ground Loops, and Overloads ... 7-3

Chapter 8: Programmable Interval Timer ..8-1
Operational Modes .. 8-1

Mode 0: Pulse on Terminal Count .. 8-1

Mode 1: Retriggerable One-Shot .. 8-1

Mode 2: Rate Generator ... 8-2

Mode 3: Square Wave Generator... 8-2

Mode 4: Software Triggered Strobe ... 8-2

Mode 5: Hardware Triggered Strobe .. 8-2

Programming .. 8-2

Reading and Loading the Counters ... 8-4

Programming Examples .. 8-4

Using Counter #0 as a Pulse Counter .. 8-4

Reading Counter #0 ... 8-4

Programming Examples Using the A12DRV Driver ... 8-4

Triggering A/D Conversions Periodically ... 8-5

Generating Square Waves of Programmed Frequency... 8-6

Measuring Frequency and Period ... 8-6

Generating Time Delays .. 8-6

Pulse on Terminal Count .. 8-6

Programmable One-Shot ... 8-6

Software Triggered Strobe ... 8-6

Hardware Triggered Strobe .. 8-7

Appendix A: Linearization ... A-1

Appendix B: Cabling and Connector Information ... B-1
AD12-8 Output Connector Pin Assignments ... B-1

Appendix C: Basic Integer Variable Storage.. C-1

CE Declaration of Conformity

Page - xi

List of Figures
Figure 1-1: AD12-8 Block Diagram .. 1-4

Figure 3-1: Option Selection Map .. 3-1

Figure 3-2: Standard Base Address Assignments for PC and PC/XT Computers 3-3

Figure 3-3: Base Address Example ... 3-4

List of Tables
Table 2-1: Configuration File Example ... 2-3

Current Revision 4B

August 1997

Page - xii

This page intentionally left blank

Chapter 1: Functional Description

Manual Number: 00650-014-4 Page 1-1

Chapter 1: Functional Description

The AD12-8 is a multifunction, moderate-speed analog-to-digital converter card with counter/tim-
ers and digital I/O ports. This card may be used in any PC compatible computer. The card is seven
inches long and requires one slot in the computer. All external connections are made through a
standard 37-pin D-type connector at the rear of the computer. The following paragraphs describe
the functions provided by the AD12-8 card.

Analog Inputs

The card accepts eight single-ended analog input channels. The full scale input for all channels is
jumper selectable, either ±10V (0.00488V resolution), or ±5V (0.00244V resolution), or unipolar
0 to 10V (0.00244V resolution). Inputs are single-ended with a common ground and can withstand
overvoltages up to ±30 volts and brief transients of several hundred volts. When power is off, the
inputs are open-circuited providing fail-safe operation. The analog-to-digital converter (A/D) is a
12-bit successive-approximation type with a sample and hold input. Conversion time is typically
25mS (35mS maximum) and, depending on the speed of the software and computer platform,
throughputs of up to 40,000 conversions per second are attainable.

Input System Expansion

The AD12-8 card may be used alone or it can support up to eight AT16-P or LVDT8-P analog input
expansion cards. An 8-bit standard LSTTL logic output from the AD12-8 is used to control the
AT16-P (These outputs are separate from the discrete I/O lines discussed later.). Four bits are used
to select one of 16 analog input channels at the AT16-P. Three bits are used to select one of eight
gains for the selected input channel. The remaining bit is a digital output (sink current 8mA, source
current 0.4mA). When interfacing to the LVDT8-P, three bits are used to select one of eight
LVDT8-P inputs. Since the eight-input multiplexer on the AD12-8 card is software addressable, an
input expansion card may be connected to each input, for a maximum of 128 channels in the
system. If more than 128 analog inputs are required, a second AD12-8 with companion input
expansion cards can be used.

Discrete Digital I/O

The AD12-8 card provides eight bits of individually jumper-programmed digital input and/or out-
put. The outputs can sink 24mA or source 2.6mA. For ease of use, we suggest that you use the
Screw Terminal Accessory Board, model UTB to make external connections.

Reference Voltage Output

A precision +10.0V (±0.1V) reference voltage output is derived from the A/D converter reference.
The reference voltage is buffered and will source up to 220mA, which is sufficient for exciting
several strain gage sensors, load cells, or other transducers.

Manual Number: 00650-014-4Page 1-2

AD12-8 Manual

Counter/Timer

The AD12-8 includes a type 8253 counter/timer which has three 16-bit programmable synchro-
nous down counters. This chip is used for event counting, pulse and waveform generation, fre-
quency and period measurement etc. A/D conversion cycles may be initiated by the Counter/Timer
by installing the TMR/EXT jumper in the TMR position. Counter #1 is connected to a 1/32 mul-
tiple of the computer color Oscillator clock (14.31818MHz). The output of counter #1 is used as
the clock for Counter #2 and also Counter #0 when so configured by installing the CLK0 jumper.
Counter #0 is fully accessible for general purpose use.

Interrupts

Interrupts are supported from either external inputs or A/D conversion completion. Selection of
the interrupt source and interrupt levels (IRQ2-7), is made by jumper. Interrupts are software
enabled and disabled. An interrupt request may be canceled by one or more of the following three
signals:

a. The computer reset signal.

b. The beginning of an A/D conversion cycle.

c. The writing of a command word to the card. That is, either updating the gain or channel
selection multiplexer on the AT16-P expansion card, or the AD12-8 multiplexer.

Utility Software

Utility software included with the AD12-8 is provided in MS-DOS format on a diskette. A pro-
gram named FINDBASE can help you to select the base address for the card. Two menu-driven
setup programs, DOS drivers in linkable object form and binary form, a VisualBASIC utility driver,
and sample programs are provided. One setup program is a configuration and calibration tool for
the AD12-8, and the second setup program is used when an AT16-P and/or LVDT8-P is used in
conjunction with the AD12-8. In the case of the AT16-P, gains are assignable on a channel-by-
channel basis. Linearization for all the commonly used thermocouple types as well as for platinum
RTD’s is also menu selectable.

A driver configuration file is generated or modified by the setup program and can be used to
configure the AD12-8 driver. CHAPTER 2: SYSTEM SOFTWARE describes the format of this
configuration file. This driver has 17 Tasks as will be described in detail in CHAPTER 5: AD12-
8 DRIVER REFERENCE of this manual.

Sample programs are provided in BASIC, QuickBASIC, Pascal and “C”.

Chapter 1: Functional Description

Manual Number: 00650-014-4 Page 1-3

Enhancements

Capabilities of the AD12-8 can be greatly enhanced by use of one or more of the following hard-
ware devices or software packages:

a. UTB Screw Terminal Cards.

This terminal board allow direct input/output signal connections via screw terminals. The card
also provides a breadboard area with ±12V and +5V computer power. This breadboard area
can be used for amplifiers, filters, and other user-assembled circuits.

b. AT16-P Expansion Multiplexer and Instrumentation Amplifier

The AT16-P is a 16-channel amplifier/multiplexer that features differential or single-ended
input capability and a choice of either DIP switch selectable gains or software programmable
gains. The AT16-P allows multiplexing of 16 analog input signals to a single AD12-8 analog
input channel. As described earlier, up to eight AT16-P’s can be connected to a single AD12-
8 to provide input capability for up to 128 analog inputs.

The AT16-P includes a low-drift instrumentation amplifier with DIP switch selectable gains of
0.5, 1, 2, 5, 10, 25, 50, 100, 200, 500, and 1000. In addition, these gains can be software
programmed to provide individual gains on a channel-by-channel basis.

For thermocouple measurements, a cold junction sensor is provided to allow reference junction
compensation, via software, for thermocouple inputs. The reference junction output may be
assigned to channel 0 of the AT16-P or, alternatively, may be jumpered to an unused AD12-8
input channel. Open-thermocouple or “break detect” circuitry is provided.

The AT16-P may also be used with 3-wire RTD’s, strain gages, and 4-20mA current transmitter
inputs. In this latter case, an application-specific version, the AT16I-P, is available.

c. LVDT8-P Multiplexer and Interface Card

This card provides AC excitation and signal conditioning to eight independent LVDT
transducers. As many as eight LVDT8-P’s may be connected to an AD12-8 to accommodate
up to 64 transducers.

d. SSH-04/-08 Simultaneous Sample and Hold Card

These cards install external to the computer and contain four and eight identical sample and
hold circuits respectively. Each circuit consists of a differential-input, programmable-gain
amplifier and a sample and hold amplifier. Outputs of the sample and hold amplifiers are
coupled through a multiplexer and a common buffer amplifier.

Manual Number: 00650-014-4Page 1-4

AD12-8 Manual

REF.
VOLT

REF.
VOLT
OUTPUT

EXT
START
A/D

EXT

TMR.
EOC.

INTERRUPT

EOC

INPUTEXT

DATA
BUFFER

12-BIT
A/D

CONVERTER

S/H
AMPL

ADDRESS
DECODE

&
BU I/O

MUX
CONTROL

DIGITAL
I/O

8 CHL.
MUX

8 BIT
DIGITAL

I/O

8 S.E.
ANALOG

INPUT

OP4
OP3
OP2
OP1

MUX
CHL.

SELECT

MUX
GAIN

SELECT

GN2
GN1
GN0

INTERRUPT
LEVEL

2-7

CTR 2

CTR 1

CLOCK
GATE
OUTPUT

GATE

OUTPUT

CLOCK

OUTPUT

PC/XT/AT BUS

Figure 1-1: AD12-8 Block Diagram

Chapter 1: Functional Description

Manual Number: 00650-014-4 Page 1-5

Specifications

Analog Inputs

Channels: Eight single-ended inputs with common ground.

Voltage Ranges: Jumper selectable, ±10V, ±5V, or 0-10V.

Resolution: 12 binary bits.

Accuracy: ±0.02% of reading ±1 LSB.

Input Impedance: 10MW or 125nA at 25 oC.

Overvoltage: ±30VDC

Linearity: ±1 LSB.

Temp. Coefficient: ±10 mV/oC zero stability

±25 mV/oC gain stability

Common Mode Rejection: (when used with AT16-P)

90 dB when gain = 1

125 dB when gain = 100

Throughput: 35 microseconds maximum.

Reference Voltage Output

Voltage: 10.0VDC ±0.1VDC at up to 220mA.

Digital I/O

Inputs: Logic high: 2.4 to 5.0 VDC at 0.4mA source current.

Logic low: 0 to 0.4 VDC at 8mA sink current.

Outputs: (DIO0 through DIO7)

Logic high: 2.8V to 5.0V at 2.6 mA source current.

Logic low: 0V to 0.4V at 24mA sink current.

Outputs: (GN0 through GN2 and OP0 through OP3).

Logic high: 2.4 to 5.0 VDC at 0.4mA source current.

Logic low: 0 to 0.4 VDC at 8mA sink current.

Interrupt Channel

Levels: Levels 2 through 7, jumper selectable.

Enable: Via software.

Source: End of A/D conversion, or external input.

Manual Number: 00650-014-4Page 1-6

AD12-8 Manual

Programmable Timer

Type: 8253 programmable interval timer.

Counters: Three 16-bit down counters, two permanently
concatenated with 1/32 multiple of the color
oscillator clock as programmable timer. One is
uncommitted.

Output Drive: 2.2mA at 0.45V (5 LSTTL loads).

Input Gate: TTL/DTL/CMOS compatible.

Clock Frequency: DC to 8 MHz.

Active Count Edge: Negative edge.

Min Clock Pulse Width: 125nS.

Timer Range: 4 MHz to <1 pulse/hr.

Environmental

Operating Temp: 0 to 60oC.

Storage Temp: -40 to 100oC.

Humidity: 0 to 90% RH, non-condensing.

Size: 7.0 inches long, requires full-size slot.

Power Required: +5VDC: 150 mA typical

+12VDC: 10 mA typical

-12VDC: 10 mA typical

How to remain CE Compliant

In order for machines to remain CE compliant, only CE compliant parts may be used. To keep a
chassis compliant it must contain only compliant cards, and for cards to remain compliant they
must be used in compliant chassis. Any modifications made to the equipment may affect the CE
compliance standards and should not be done unless approved in writing by Industrial Computer
Source.

The Model AD12-8 is designed to be CE Compliant when used in an CE compliant chassis.
Maintaining CE Compliance also requires proper cabling and termination techniques. The user is
advised to follow proper cabling techniques from sensor to interface to ensure a complete CE
Compliant system. Industrial Computer Source does not offer engineering services for designing
cabling or termination systems. Although Industrial Computer Source offers accessory cables and
termination panels, it is the user's responsibility to ensure they are installed with proper shielding
to maintain CE Compliance.

Chapter 2: Software

Manual Number: 00650-014-4 Page 2-1

Chapter 2: Software

Software Provided

The following utility software is provided with AD12-8 in MS-DOS format on a 3.5-inch diskette.

a. A program named FINDBASE to help you locate a convenient base address for the card

b. A menu-driven setup and calibration program SETA12.EXE.

c. A menu-driven setup and calibration program for the sub-multiplexer cards, SETMUX.EXE.

d. Software drivers are included in a directory labeled DRIVERS; a BASIC loadable file called
A12DRV.BIN, a “C” language linkable file called A12DRVC.OBJ, and a QuickBASIC and
Pascal linkable file called A12DRV.OBJ. All forms of the driver were created using Turbo
Assembler, by Borland.

e. Sample programs in QuickBASIC (B Samples), “C” (C Samples), and Pascal (P Samples).

f. A VisualBASIC Utility driver

g. A Microsoft Windows driver in “DLL” form.

h. Windows sample programs in both “C” and Visual BASIC.

i. A demonstration program for Windows.

Backing up the Master Diskettes

As with any software package, you should make backup copies for everyday use and place your
original master diskettes in a safe location. The easiest way to make a backup copy is to use the
DOS DISKCOPY utility.

In a single drive system the command is:

DISKCOPY A: A:

You will need to swap disks as requested by the system.

In a two-disk system the command is:

DISKCOPY A: B:

This will copy the contents of the master disk in drive A to the backup disk in drive B.

Manual Number: 00650-014-4Page 2-2

AD12-8 Manual

Hard Disk Installation

The files contained on the master diskette may also be copied onto your hard disk. To do this
perform the following:

1. Place the master diskette into a floppy drive.

2. Change the active drive to the drive that has the master diskette installed. For example, if the
diskette is the A drive, type A:

3. Type INSTALL and follow the screen prompts.

Files contained on the disk are stored in separate directories as follows:.

ROOT: Contains the FINDBASE PROGRAM that will help you to decide what
base address to use with the card. Also contains the SETA12.EXE setup and
calibration program, the SETMUX.EXE sub-multiplexer card setup and
calibration program, and POLY.EXE, the linearization polynomial program.

PSAMPLES: Contains Pascal samples and the Pascal-linkable driver.

CSAMPLES: Contains “C” samples and the “C”-linkable driver.

BSAMPLES: Contains the BASIC and QuickBASIC samples as well as the binary and
linkable drivers.

VBWIN: Contains the Windows Visual BASIC samples.

CPPWIN: Contains the Windows “C” samples.

Configuration File

The Configuration File has several purposes; most of which are associated with use of the software
drivers provided with your AD12-8 card. These are as follows:

a. Provide means to automatically configure the driver and, thus, avoid need for multiple calls to
the driver to do the setup.

b. Allow the setup programs to do the work of configuring the driver. When you use the setup
programs to assist in configuring the card, this information is saved in the configuration file
and can then be used by the drivers.

The Configuration File, SETUP.CFG, is generated or modified with the setup programs. It can also
be generated or modified by an editor or a word processor in the non-document mode. This file is
a structured file containing setup information for:

a. AD12-8 plug in PC card.

b. AT-16 sub-multiplexer card.

c. LVDT8-P sub-multiplexer card.

d. Programmable gain assignments.

e. Curve assignments.

Chapter 2: Software

Manual Number: 00650-014-4 Page 2-3

The configuration file must contain 12 lines of information or data. The file is strictly text only
(ASCII). Each line of information is made up of a description field, an equal sign (=), and a setup
information field. Each line in the configuration file supplies data for a specific parameter and
must be in the correct order. TABLE 2-1 contains an example of a configuration file.

Base Address = $300

Extension Card 0 = 1:F:Tt3UUUUUUUUSSSSS

Extension Card 1 = 2:UUUUUUUU

Extension Card 2 = 0:U

Extension Card 3 = 0:S

Extension Card 4 = 0:S

Extension Card 5 = 0:S

Extension Card 6 = 0:S

Extension Card 7 = 0:S

Voltage Range = 5

Bipolar/Unipolar = B

IRQ Channel = 3

Table 2-1: Configuration File Example

Base Address

Values may be entered as a decimal string, a hexadecimal string, or as a binary string. A decimal
string is any string of digits made up of the digits 0 through 9 as follows:

Decimal format ... DDDDD (e.g. 768)

Hexadecimal strings consist of a string of digits containing the digits 0 through 9 and the letters A
through F. Hexadecimal strings may be made up in one of two ways; Pascal or “C” as follows:

Pascal format $HHHH (e.g. $300)

“C” format 0xHHHH (e.g. 0x300)

Binary strings are made up of 0’s and 1’s preceded by a # as follows:

Binary format ... #bbbbbbbbbb (e.g. #1100000000)

Mux Extensions

Multiplexer (mux) channel extension to the A/D board can be made up of an AT16-P description
string, an LVDT8-P description string, or a raw channel description string. The first character
following the “=” is a card code that defines which description string follows.

Card code 0: Raw A/D channel; i.e., no external sub-multiplexer is attached. The 0: may
be followed by one of three characters; T, U, or S.

T signifies that a reference junction on a sub-multiplexer card is directly
attached to the channel.

Manual Number: 00650-014-4Page 2-4

AD12-8 Manual

S signifies that the channel is skipped; i.e., not used.

U signifies that the channel is unskipped; i.e., treated as a normal A/D input.

Card code 1: An AT16-P sub-multiplexer is attached. Immediately following the 1: card
code will be a unit-of-measure code. Possible codes are F (units are degrees
Fahrenheit), C (units are degrees Celsius), and N (no units specified). Note:
If N is used but a thermocouple is installed, then the default is degrees F.

Following the unit-of-measure code is a series of 16 channel-code letters or numbers that deter-
mine how the channel is to be used. Any of the following codes may be used for each channel:

S: The channel is skipped; i.e., not used.

U: The channel is used (gain code 0).

T: The channel is used for a thermocouple reference junction

t,k,j,e,r,s,b,a,u: The channel is used with the indicated thermocouple type or platinum RTD
attached. (“a” is used for RTD’s with an alpha of 392 and “u” is used for
RTD’s with an alpha of 385.)

A: The channel is to have automatic gain ranging. Note that the AIM-16 gain
switches must be set for programmable gain for automatic gain ranging to
work properly.

0,1,2,3,4,5,6,7: The channel is to be set to the indicated gain. Gains associated with these
code numbers are defined in the gain table contained in TASK 4’s reference
in CHAPTER 5: AD12-8 DRIVER REFERENCE. The AT16-P gain
switches must be set for programmable gain for this function to work
properly.

Card Code 2: An LVDT8-P sub-multiplexer card is attached. Following the card code is
a series of eight channel-code letters that define how the channels are to be
used. The letters are U for unskipped and S for skipped.

Voltage Range

Values indicate the voltage range that has been selected by jumpers on the card. Possible values are
either 5 or 10.

Bipolar/Unipolar Mode

A “B” signifies that the card is set to bipolar mode while a “U” indicates that the card is set to the
unipolar mode.

IRQ Level

Values indicate which IRQ interrupt level will be used. Allowable values are 2 through 7. If the
setup program is used, it will put a 0 on this line if no interrupt level is selected. If the driver detects
a 0 on this line, it installs a default of IRQ3.

Chapter 2: Software

Manual Number: 00650-014-4 Page 2-5

Example

Using the configuration file listed in TABLE 2-1: CONFIGURATION FILE EXAMPLE , the
information has the following meaning:

a. The base address is set to hex 300 in Pascal format.

b. Channel 0 of the AD12-8 has an AT16-P sub-multiplexer card attached. The unit of measure
for this card is oF. The AT16-P channel 0 is used for reference junction, channel 1 is a “t”
thermocouple type input, channel 2 has a gain code of 3, channels 3 through 10 are used (gain
code 0), and the remaining channels are skipped (unused).

c. Channel 1 of the AD12-8 has an LVDT8-P attached, with all eight channels unskipped.

d. Channel 2 of the A/D card is a direct channel that is unskipped.

e. All other A/D channels are direct and skipped.

VisualBasic Utility Driver

Extensions to the VisualBASIC language are on the diskette provided with your card. The exten-
sions are in a directory named VBACCES. These extensions are in the form of a .DLL, a .GBL,
and a VisualBASIC sample. Together these files allow you to access the port and main memory
space in a fashion similar to BASIC, QuickBASIC, Pascal, C/C++, Assembly, and most other stan-
dard languages.

To use these files in a VisualBASIC program, you must create a .MAK file (File l New Project)
similar to the sample provided (or else, modify your existing project file) and include the .GBL file
(File | Add File). Once this has been done, VisualBASIC will be enhanced with the addition of the
following functions.

InPortb

Function: Reads a byte from a hardware port. Due to limitations of VisualBASIC, the
number is returned in an integer.

Declaration: function InPortb(byval address as integer) as integer

InPort

Function: Reads an integer from a hardware port. This function returns the 16-bit
value obtained from reading the low byte from address and the high byte
from address+1.

Declaration: function InPort(byval address as integer) as integer

OutPortb

Function: Writes the lower eight bits of value to the hardware port at address. This
function returns the value output.

Declaration: function OutPortb(byval address as integer, byval value as
integer) as integer

Manual Number: 00650-014-4Page 2-6

AD12-8 Manual

OutPort

Function: Writes all 16 bits of value to the hardware port at address. This function
returns the value output.

Declaration: function OutPort(byval address as integer, byval value as
integer) as integer

Peek

Function: Reads a byte from main memory (DRAM).

Declaration: function Peek(byval segment as integer, byval offset as integer)
as integer

Poke

Function: Writes the lower eight bits of value to segment:offset.

Declaration: function Poke(byval segment as integer, byval offset as integer,
byval value as integer) as integer

Note that in all of the above functions, an inherent limitation of BASIC in general and VisualBASIC
in particular makes the values sent less intuitive. All integers in BASIC are signed numbers,
wherein data are stored in two’s complement form. All bit patterns must be converted to-and-from
this two’s complement form if meaningful display is required. Otherwise, values returned from the
InPortb function will be -128 to 127, rather than 0 to 255. An alternative is to perform all assign-
ments in hexadecimal, rather then decimal form.

Before the program will execute, the .GBL file must be modified to include the path to the
VBACCES.DLL as appropriate for your system. Merely replace the statement “VBACCES.DLL”
with “drive:path\VBACCES.DLL”.

As an alternative to changing the source code, you can copy the VBACCES.DLL file into your
Windows directory. This will allow multiple programs to find the same .DLL without having to
know where it is located. Just leave off all references to a path in the .GBL file as shown in the
sample.

Chapter 3: Hardware Configuation and Installation

Manual Number: 00650-014-4 Page 3-1

Chapter 3: Hardware Configuation and Installation

Option Selection

The AD12-8 card features are selected by hardware jumpers. At least one of each of the option
categories must be selected if the card is to operate correctly. The setup program provided on
diskette with the card provides menu-driven pictorial presentations to help you quickly set up the
card.

Analog Input Ranges

The available input voltage ranges are ±10V (4.88 mV resolution), ±5V (2.44mV resolution) or
unipolar 10V (2.44mV resolution). To select the range, install two jumpers on the card; one at the
location labels 10V/5V and one at the location labeled UNIP/BIP.

Range 10V/5V Jumper UNIP/BIP Jumper

±5V 5V BIP

±10V 10V BIP

+10V 5V UNIP

Figure 3-1: Option Selection Map

Counter/Timer

Three 16-bit Counter/Timers are provided on AD12-8. Refer to the block diagram in CHAPTER
1: FUNCTIONAL DESCRIPTION for an understanding of the counter/timer configuration and
to CHAPTER 8: PROGRAMMABLE INTERVAL TIMER for a description of applications.
Counter #0 is fully accessible to you for event counting, pulse or waveform generation, frequency
or period measurement, etc. Counter #1 and Counter #2 are intended for software-programmed,
timed A/D start. The time between measurements may be programmed to almost three hours.

Counter #0 has its clock, gate, and output lines available on the I/O connector. Also, the Counter
#0 clock input can be the Counter #1 output if a jumper is installed at the location labeled CLK0.
The Counter #0 gate is pulled up to +5V by a resistor.

The clock for Counter #1 is supplied from a 1/32 multiple of the 14.31818 MHz color oscillator.
Counter #1’s gate is available on the I/O connector and, like the Counter #0 gate, is pulled up to
+5V by a resistor. The Counter #1 output is accessible at the I/O connector and, is also connected
to the Counter #2 clock input. The Counter #1 output may also be supplied as a clock input to
Counter #0 if the CLK0 jumper is installed as noted above.

Manual Number: 00650-014-4Page 3-2

AD12-8 Manual

The Counter #2 clock is supplied from the output of Counter #1 as noted previously. The gate is
pulled up to +5V and is not accessible at the I/O connector. The Counter #2 output can be used to
start preprogrammed A/D conversions if the TMR/EXT jumper is installed in the TMR position.

A/D Conversion Start

An A/D conversion can be started from Counter #2 if the TMR/EXT jumper is in the TMR posi-
tion. Alternatively, A/D conversions can be initiated by negative pulses on Digital Input 0 if the
TMR/EXT jumper is in the EXT position.

A/D conversion start can also be initiated in software by a computer write to BASE ADDRESS +
1 or, if the AUTO jumper is installed, by a computer read of BASE ADDRESS + 0. The AUTO
mode is especially useful when high throughput is required.

Interrupts

Interrupts originating from either completion of A/D conversions or from an external source (pin
24) are supported. Interrupts are enabled by setting the IEN bit of Control Register #1 high. Selec-
tion of the interrupt source is made by jumper. Install a jumper in the EOC position at jumper
location EXT/EOC to select interrupts caused by the end-of-conversion signal. Install a jumper in
the EXT position at jumper location EXT/EOC to select external interrupts.

The end-of-conversion interrupt is supported by the AD12-8 software drivers. If you desire to use
external interrupts, then you must supply your own interrupt service routine. NOTE: The end-of-
conversion interrupt is intended to be used only when A/D conversions are started by the counter/
timer(install jumper in the TMR position of the TMR/EXT jumper), or by an external event (install
jumper in the EXT position of the TMR/EXT jumper). If the AUTO jumper is installed, or
Software Start is used, the use of interrupts will degrade card speed.

Interrupt levels IRQ2 through IRQ7 are available. The desired level is selected by installing a
jumper in one of the jumper locations marked IRQ2 through IRQ7.

Digital I/O

The AD12-8 card provides eight individually programmable digital inputs/outputs in addition to
eight digital outputs OP0-OP3, GN0-GN2, and USER. These latter eight outputs operate strictly
under software control.

Eight jumpers determine the input/output configuration of the eight digital lines identified as DIO0-
DIO7. If no jumpers are installed, all eight lines are configured as inputs. Installation of a jumper
at locations DO-D7 convert the corresponding line to an output.

Digital inputs are read from a register at BASE ADDRESS + 3. Digital outputs are written to a
register at BASE ADDRESS + 0. Note that full feedback is provided for the digital outputs be-
cause output status can be read back through the register at BASE ADDRESS + 3.

Chapter 3: Hardware Configuation and Installation

Manual Number: 00650-014-4 Page 3-3

Selecting and Setting the Base Address

The following section shows you how to select and set the address.

Selecting a Base Address

You need to select an unused segment of eight consecutive I/O addresses. The base address will be
the first address in this segment. The base address may be selected anywhere on a 8-bit boundary
within the I/O address range 200-3FF hex (excluding 1F0 through 1F8 in AT’s) providing that it
does not overlap with other functions. The following procedure will show you how to select the
base I/O address.

1. Check the tables in FIGURES 3-2 AND 3-3 for lists of standard address assignments and then
check what addresses are used by any other I/O peripherals that are installed in your computer.
(Memory addressing is separate from I/O addressing, so there is no possible conflict with any
add-on memory that may be installed in your computer.) We urge that you carefully review the
address assignment table before selecting a card address. If the addresses of two installed
functions overlap, unpredictable computer behavior will result.

2. From this list (or using the FINDBASE program on diskette), select an unused portion of eight
consecutive I/O address. Note from the tables that the sections 280-2EF and 330-36F are
unused. This address space is good area to select a base address from. Also, if you are not
using a given device in listed in the tables, then you may use that base address as well. For
example, most computers do not have a prototype card installed. If your computer does not
have one, then base address 300 hex is a good choice for a base address.

3. Finally make sure that the base address you have chosen has the last digit as 0 or 8. This
insures that your base address is on an 8-byte boundary.

(Continued on next page)

Manual Number: 00650-014-4Page 3-4

AD12-8 Manual

Figure 3-2: Standard Base Address Assignments for PC and PC/XT Computers

** These options can not be used together - addresses overlap

Hex Range Usage

000-0FF Internal System - Not Usable

1F0-1FF AT Hard Disk

200-207 Game Control

278-27F Parallel Port (LPT2)

238-23B Bus Mouse

2E8-2EF Asynchronous Communications (COM4)

2F8-2FF Asynchronous Communications (COM2)

300-31F Prototype Card

320-32F XT Hard Disk

378-37F Parallel Port (LPT1)

380-38F SDLC Communications

3A0-3AF SDLC Communications

3B0-3BB MDA

3BC-3BF Alt. Parrallel Port

3C0-3CF EGA

3DO-3DF CGA

3E8-3EF Asynchronous Communications (COM3)

3F0-3F7 Floppy Disk

3F8-3FF Asynchronous Communications (COM1)

Chapter 3: Hardware Configuation and Installation

Manual Number: 00650-014-4 Page 3-5

Setting the Base Address

The AD12-8 base address is selected by DIP switch S1 located in the lower right hand portion of
the card. Switch S1 controls address bits A3 through A9. Bits A0 through A2 are used for the eight
address locations in I/O space required by the AD12-8. The following procedure will show you
how to set the base address. See FIGURE 3-3: BASE ADDRESS EXAMPLE below, for a
graphic representation of this example.

1. We will use base address 300 hex as an example. Determine the binary representation for your
base address. In our example, 300, the binary representation is 11 0000 0000. The conversion
multipliers for each binary bit are contained in FIGURE 3-3 for reference.

2. Locate switch S1 on the lower right side of the card. Note there are seven switches, which will
be used to set the seven most-significant bits in the binary representation from step 1).

3. Note from FIGURE 3-3 that switch position A9 corresponds to the most significant bit in your
binary representation. For each bit in your binary representation, if the bit is a one, turn the
corresponding switch off; if the bit is zero, turn the corresponding switch on.

Hex representation 3 0 0

Binary representation 1 1 0 0 0 0 0

Conversion multiplier 2 1 8 4 2 1 8

Switch ID A9 A8 A7 A6 A5 A4 A3

Switch setting OFF OFF ON ON ON ON ON

Figure 3-3: Base Address Example

Using the Setup Program to Set the Base Address

The setup program provided on diskette with AD12-8 contains an interactive menu-driven program
to assist you in setting the base address. The following procedure demonstrates the use of the setup
program.

1. Choose a desired base address.

2. Execute the setup program by typing SETA12 and pressing the ENTER key.

3. Select the first item in the menu, “1) Set board address” with the up or down arrow key and
press ENTER.

4. Enter the desired base address in hex, the program will display a graphic representation of how
you should set the switches. You may press the space bar to try another address.

5. Set DIP switch S1 as shown on the graphic representation.

Manual Number: 00650-014-4Page 3-6

AD12-8 Manual

Installing the AD12-8 Card

The following procedure will show you how to install the AD12-8 inside the computer.

1. Ensure that all options have been set as described in the first part of this chapter. Be sure to pay
close attention to base address selection.

2. Turn off the power switch of your computer and remove the power cords from the wall outlet.

 CAUTION!

Failure to remove power from the computer could result in electrical shock, or
damage to your computer system.

3. Remove the computer cover.

4. Locate an unused full length slot, and remove the blank I/O back plate.

5. Insert the card in the slot, and install the I/O back plate screw.

6. Inspect the installation for proper fit and seating of the card.

7. Replace the computer cover.

8. Reapply power to the computer.

9. Perform the calibration procedure which follows.

Calibration and Test

All cards are calibrated prior to shipment. However, periodic calibration of AD12-8 is recom-
mended to retain full accuracy. The calibration interval depends to a large extent on the type of
service that the card is subjected to. For environments where there are frequent large changes of
temperature and/or vibration, a three-month interval is suggested. For laboratory or office condi-
tions, six months to a year is acceptable.

A 4-1/2 digit digital multimeter is required as a minimum to perform satisfactory calibration. Also,
a voltage calibrator or a stable noise-free DC voltage source that can be used in conjunction with
the digital multimeter is required.

Calibration is performed using the SETA12 program on the diskette supplied with your card. This
program will lead you through the set up and calibration procedure with prompts and graphic
displays that show the settings and adjustment trim pots. This calibration program also serves as
a useful test of the AD12-8 A/D functions and can aid in troubleshooting if problems arise.

Chapter 3: Hardware Configuation and Installation

Manual Number: 00650-014-4 Page 3-7

Calibration Procedure

The following procedure is brief and is intended for use in conjunction with the calibration part of
the SETA12 program.

1. Start the calibration program by typing SETA12 and press the ENTER key at the DOS prompt.

2. Use the relevant menu selections to set the switches and jumpers for the manner in which the
card will be calibrated; i.e., number of channels, and ±5V range). These settings are used by
the calibration portion of the program.

3. Use the arrow key to select option 7.Calibrate A/D, then press the ENTER key.

4. Use the arrow key to select option 1.Adjust Offset, from the Action Menu at the top left hand
corner of the screen.

5. Following the instructions on the screen, perform the offset adjustment

6. Use the arrow key to select option 2.Adjust Gain, from the Action Menu.

7. Following the instructions on the screen, perform the gain adjustment

8. Use the arrow key to select option 3.Check, from the Action Menu.

9. Following the instructions on the screen, perform the calibration check.

10. This completes the calibration procedure.

Manual Number: 00650-014-4Page 3-8

AD12-8 Manual

This page intentionally left blank

Chapter 4: Programming the AD12-8

Manual Number: 00650-014-4 Page 4-1

Chapter 4: Programming the AD12-8

This chapter provides you with information on how to program the AD12-8. First, information is
provided on how to program the card using direct register access. Following this is information on
using the drivers provided with the AD12-8.

At the lowest level, the AD12-8 can be programmed using direct I/O input and output instructions.
In BASICA, these are the INP (X) and OUT X,Y functions. Assembly language and most high
level languages have equivalent instructions. Use of these functions usually involves formatting
data and dealing with absolute I/O addresses. Although not demanding, this can require many lines
of code and requires an understanding of the devices, data format, and architecture of the AD12-8.
You may find it easer to design your program using the supplied drivers.

AD12-8 Register Address Map

The AD12-8 uses eight consecutive addresses in I/O space as follows:

REGISTER ADDRESS READ FUNCTION WRITE FUNCTION

BASE ADDRESS + 0 A/D Low Byte 8 bit Digital Output

BASE ADDRESS + 1 A/D High Byte Start A/D Conversion

BASE ADDRESS + 2 Read status register Write Control Register #1

BASE ADDRESS + 3 8 bit digital input Write Control Register #2

BASE ADDRESS + 4 Read Counter #0 Load Counter #0

BASE ADDRESS + 5 Read Counter #1 Load Counter #1

BASE ADDRESS + 6 Read Counter #2 Load Counter #2

BASE ADDRESS + 7 Not Used Write Counter Control

Register Definitions

Control Registers

The AD12-8 card contains two 8-bit control registers. These registers allow software selection
and/or control of functions on the AD12-8 card and associated input expansion cards.

Base + 2 Write: Read or write the control register #1.

B7 B6 B5 B4 B3 B2 B1 B0

OP3 OP2 OP1 OP0 IEN MA2 MA1 MA0

OP0-OP3: These bits correspond to four general-purpose digital output lines. These
bits are available on both control registers #1 and #2, in order to save
program execution time. These lines can be used for external control
functions such as selecting inputs from the AT16-P, or LVDT8-P sub-
multiplexer cards.

Manual Number: 00650-014-4Page 4-2

AD12-8 Manual

IEN: This bit enables/disables AD12-8 generated interrupts. 1 = enabled, 0 =
disabled.

MA0-MA2: These bits select the analog mutiplexer channel address on the AD12-8 card
(Channels 0 through 7).

Base + 3 Write: Read or write the control register #2.

B7 B6 B5 B4 B3 B2 B1 B0

OP3 OP2 OP1 OP0 USER GN2 GN1 GN0

0P0-OP3: These bits correspond to four general-purpose digital output lines. These
bits are available on both control registers #1 and #2, in order to save
program execution time. These lines can be used for external control
functions such as selecting inputs from the AT16-P, or LVDT8-P sub-
multiplexer cards.

USER: This bit is available for use as a digital output bit.

GN0-GN2: These bits correspond to three general purpose digital output lines whose
primary purpose is to select one of eight gains on the AT16-P analog input
expansion card.

Status Register

The Status register provides information about the operation of the card.

Base + 2 Read: Read the card status.

B7 B6 B5 B4 B3 B2 B1 B0

EOC GN2 GN1 GN0 IRQ MA2 MA1 MA0

EOC: End of conversion. If EOC = 1, an A/D conversion is underway. If EOC
is 0, then the A/D data registers contain valid data from the previous
conversion and the A/D is ready to perform the next conversion.

GN0-GN2: These bits correspond to three general purpose digital output lines whose
primary purpose is to define one of eight gains on AT16-P sub-multiplexer
cards.

IRQ: After generation of an interrupt, the AD12-8 card sets this bit high(1). It is
reset to state 0 by a computer reset, or a write to either of the control
registers, or the beginning of an A/D conversion.,

MA2-MA0: These bits define the analog multiplexer channel address on the AD12-8
card (channels 0 through 7).

Chapter 4: Programming the AD12-8

Manual Number: 00650-014-4 Page 4-3

A/D Registers

A/D data are in true binary form and are latched in the A/D registers at the end of each conversion.
These are read at BASE ADDRESS and BASE ADDRESS +1 in low-byte/high-byte sequence.
The data are available until the end of the next A/D conversion. The status of digital output bits
OP0-OP3 are contained in the low byte register.

Base + 0 Read: Contains the lower four bits of the A/D converter output in binary form and the
status of digital output bits OP0-OP3 in binary form.

B7 B6 B5 B4 B3 B2 B1 B0

AD3 AD2 AD1 AD0 OP3 OP2 OP1 OP0

AD0-AD3: The lower four bits of the A/D conversion, AD0 is the least-significant bit.

OP0-OP3: The status of digital outputs OP0-OP3.

Base + 1 Read: Contains the upper eight bits of the A/D converter output in binary form.

B7 B6 B5 B4 B3 B2 B1 B0

AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4

AD4-AD11: The most significant eight bits of the A/D conversion, AD11 is the most-
significant bit.

Base + 1 Write: A write to this location starts an A/D conversion. The data written is irrelevant.
This causes the EOC bit of the status register to go high until the conversion is complete.

Digital I/O

The AD12-8 card provides 16 bits of digital I/O capability. If the card is to be used with an AT16-
P input multiplexer expansion card, then half of these bits are used for gain programming and
multplexer channel selection. If the AT16-P is not to be used, then these bits may be programmed
using the control registers as described earlier in this section.

The AD12-8 card provides eight individually programmable digital inputs/outputs. Eight jumpers
determine the input/output configuration of the eight digital lines identified as DIO0-DIO7. If no
jumpers are installed, all eight lines are configured as inputs. Installation of a jumper at locations
DO-D7 convert the corresponding line to an output.

Digital inputs are read from a register at BASE ADDRESS + 3. Digital outputs are written to a
register at BASE ADDRESS + 0.

Manual Number: 00650-014-4Page 4-4

AD12-8 Manual

Base + 0 Write: Write digital output.

B7 B6 B5 B4 B3 B2 B1 B0

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

DO0-DO7: These are digital outputs if so programmed by jumpers D0-D7.

Base + 3 Read: Read digital input.

B7 B6 B5 B4 B3 B2 B1 B0

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

DI0-DI7: These are digital inputs if so programmed by jumpers DO-D7.

Counter/Timer Registers

Base + 4 Write/Read: Counter #0 read or write. When writing, this register is used to load a
counter value into the counter. The transfer is either a single or double byte transfer, depending on
the control byte written to the counter control register at BASE ADDRESS + 7. If a double byte
transfer is used, then the least-significant byte of the 16 bit value is written first, followed by the
most significant byte. When reading, the current count of the counter is read. The type of transfer
is also set by the control byte.

Additional information about the type 8253 counters is presented in CHAPTER 8: PROGRAM-
MABLE INTERVAL TIMER section of this manual. However, for a full description of features
of this extremely versatile IC, refer to the Intel 8253 data sheet.

Base + 5 Write/Read: Counter #1 read or write. See description for Base + 4

 Write/Read.

Base + 6 Write/Read: Counter #2 read or write. See description for Base + 4

 Write/Read.

Base + 7 Write: The counters are programmed by writing a control byte into a counter control
register at BASE ADDRESS + 7. The control byte specifies the counter to be programmed, the
counter mode, the type of read/write operation, and the modulus. The control byte format is as
follows:

B7 B6 B5 B4 B3 B2 B1 B0

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

Chapter 4: Programming the AD12-8

Manual Number: 00650-014-4 Page 4-5

SC0-SC1: These bits select the counter that the control type is destined for.

SC1 SC0 Function

0 0 Program Counter 0

1 1 Program Counter 1

0 1 Program Counter 2

0 1 Read Back Command

RW0-RW1: These bits select the read/write mode of the selected counter.

RW1 RW0 Counter Read/Write Function

0 0 Counter Latch Command

0 1 Read/Write LS Byte

1 0 Read/Write MS Byte

1 1 Read/Write LS Byte, then MS Byte

M0-M2: These bits set the operational mode of the selected counter.

MODE M2 M1 M0

0 0 0 0

1 0 0 1

2 X 1 0

3 X 1 1

4 1 0 0

5 1 0 1

BCD: Set the selected counter to count in binary (BCD bit = 0) or BCD (BCD bit = 1).

Manual Number: 00650-014-4Page 4-6

AD12-8 Manual

Programming Using the Drivers

Using direct register access to program the AD12-8 is straightforward but the coding can be rather
tedious. To assist you in building your application quickly, a driver is provided. This driver is
provided in three forms. Which form you use will depend on the programming language that you
intend to use in your application. A task reference for this driver is provided in CHAPTER 5:
AD12-8 DRIVER REFERENCE. The driver file names and their language use are as follows:

A12DRV.BIN A BASIC loadable driver for use with most interpreted BASIC languages.
A12DRV.OBJ A Pascal and QuickBASIC linkable driver in object form.

A12DRVC.OBJ A “C” linkable driver in object form.

Also, to help you understand how to use the driver with your program, sample programs are pro-
vided in three languages; “C”, Pascal, and QuickBASIC. Sample 3 is provided in Pascal and “C”
only. The programs are:

SAMPLE 1 - Demonstrates data acquisition using polling.

SAMPLE 2 - Demonstrates timer-driven data acquisition using interrupts.

SAMPLE 3 - Same as Sample 2 but uses the configuration file to set up the driver.

To access the functions of the driver, a call to a single procedure within the driver is used. The
name of the procedure for the driver is A12DRV. The procedure is called with three variables,
which are defined as follows:

task: The number of the task to perform. A reference with a list of tasks for each
driver are provided in CHAPTER 5: AD12-8 DRIVER REFERENCE.

parameters: This is an array of integers which contains information required by the
driver. CHAPTER 5: AD12-8 DRIVER REFERENCE defines what
values need to be passed for each task. The array should hold five integers.

status: An error code is returned in this variable. A zero is returned if there is no
error.

When calling the procedure, certain important requirements must be met:

A. The three variables must be declared as global. If they are not, the driver will not be able to find
their data segment. Most programming languages only use the data segment for global variables,
which is permanent storage. Variables declared in procedures are usually allocated on the stack,
which is temporary storage.

B. The driver expects parameters to be integer type variables and will write to and read from the
variables on this assumption. The driver will not function properly if non-integer variables are
used in the call.

C. The variables should be passed by reference. The driver expects offsets of the variables so that
data may be returned when required.

D. The passed variables are positional. That is, the variables must be specified in the sequence
(task, parameters, status). Their location is derived sequentially from the variable pointers on
the stack.

E. The driver will not function properly if arithmetic functions (+, -, x, etc) are specified within
the variable list bracket.

Chapter 4: Programming the AD12-8

Manual Number: 00650-014-4 Page 4-7

Using the Driver with Turbo or Borland C

The following list shows you how to use the driver with Borland or Turbo C. You may refer to any
of the “C” example programs for further illustration.

A. Include the A12DRVC.H header in your program. This simple header provides a function
prototype of the procedure call.

#include “a12drvc.h”

B. Declare the three variables for the driver globally, at the beginning of your program.

int task,params[5],status;

C. Make your assignment to these variables as desired for the function you wish to perform. See
CHAPTER 5: DRIVER REFERENCE for details on each task.

D. Make the call to the driver, passing the offset of each parameter.

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(status));

E. Create a project file within the Turbo C environment, and add the name of your program with
the .C extension, and the name of the driver with a .OBJ extension.

F. Select “LARGE” memory model under the compiler section of the options menu.

G. Compile and link the program.

Using the Driver with Microsoft C

To use the driver with Microsoft C version 6.0, add the following code to your application code as
shown below:

_asm

{

push DS

mov AX,ES

mov DS,AX

}

/* call driver as normal */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(status));

_asm

{

pop DS

}

Manual Number: 00650-014-4Page 4-8

AD12-8 Manual

If you are using a version of Microsoft C prior to version 6.0 use the following code:

_asm _emit 0x1E

_asm _emit 0x8E

_asm _emit 0xD8

/* call driver as normal */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(status));

_asm _emit 0x1F

These changes work around a peculiarity of Microsoft C, enabling our drivers to locate the vari-
ables used in the program.

Using the Driver with Turbo Pascal

The following procedure will show you how to use the driver with Borland Turbo Pascal. You may
refer to any of the Pascal example programs for further illustration.

A. Include the following compiler directive at the beginning of your program.

{$L a12drv}

B. Declare the three variables for the driver globally, at the beginning of the program.

type param_array = array[1..5] of integer;

var params: param_array;

 task,status : integer;

C. Declare the driver function as external in using a prototype declaration

procedure a12drv(task:word; param:word; status:word);external;

D. Make your assignment to these variables as desired for the function you wish to perform. See
CHAPTER 5: DRIVER REFERENCE for details on each task.

E. Make the call to the driver.

a12drv(ofs(task),ofs(params),ofs(status));

F. Compile and link the program.

Using the Driver with QuickBASIC

The following procedure will show you how to use the driver with Microsoft QuickBASIC. You
may refer to any of the QuickBASIC sample programs for further illustration. The following
procedure will allow you to use the driver both in the QuickBASIC environment and from the
command line compiler.

A. Declare the three variables for the driver as global.

DIM TASK%, STAT%, PARAMS%(5)

Chapter 4: Programming the AD12-8

Manual Number: 00650-014-4 Page 4-9

B. The array dimension statement must be followed by the COMMON SHARED statement for the
driver to be able to find the array. Note: Steps A and B are necessary for any array that will be
used by the driver. Certain tasks within the driver required the address of a data buffer, so these
two steps would need to be performed for those arrays as well.

COMMON SHARED PARAM%()

C. Now DECLARE the driver routine. This declaration must include a BYVAL statement before
the array variable.

DECLARE SUB A12DRV(TASK%, BYVAL PARAM%, STAT%)

D. Make your assignment to these variables as desired for the function you wish to perform. See
CHAPTER 5: DRIVER REFERENCE for details on each task.

E. Make the call to the driver. The CALL statement must explicitly pass the offset of the array
variable.

CALL A12DRV(TASK%, VARPTR(PARAM%(1)), STAT%)

F. To use the program and driver in the environment, you must link a Quick Library. Perform the
following command from the command line.

LINK /Q A12DRV.OBJ,A12DRV.QLB,,BQLB45.LIB; [ENTER]

G. Now load the Quick Library when starting the environment.

QB /L A12DRV.QLB [ENTER]

H. Use the start command from the run menu to execute the program.

I. To prepare an EXE file from the command line, use the following compile and link commands.

BC /o YOURPROG;[ENTER]

LINK YOURPROG+A12DRV;[ENTER]

Using the Driver with BASIC

The following procedure will show you how to use the driver with most BASIC languages. You
may refer to any of the BASIC sample programs for further illustration.

A. Declare the three variables for the driver as global.

10 DIM TASK%, STAT%, PARAMS(5)

B. Define a segment within memory to load the driver. You must make sure this segment is not used
by BASIC or your program.

20 DRIVERSEG = &H5000

30 DEF SEG = DRIVERSEG

Manual Number: 00650-014-4Page 4-10

AD12-8 Manual

C. Load the driver into memory starting at offset 0 within the defined segment.

40 DRIVER = 0

50 BLOAD “a12drv.bin”,DRIVER

Make your assignment to these variables as desired for the function you wish to perform. See
CHAPTER 5: DRIVER REFERENCE for details on each task.

E. Make the call to the driver.

60 CALL a12drv(TASK%,PARAMS%(1),STATUS%)

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-1

Chapter 5: AD12-8 Driver Reference

This chapter provides detailed information on the functions available from the AD12-8 driver. The
chapter is divided into four sections, first is a section detailing the use of this driver, second is a task
summary, third is the task reference and last is an error code summary.

Using the Driver

The Point List Concept

Most functions of this driver work with a point list. The point list is a list of point addresses in the
order that you desire to have conversions performed. A point address is a number specifying the
channel of the AD12-8 and the AT16-P. The first 16 point addresses (0-15) refer to the AT16-P
channels for the AT16-P attached to channel 0 of the AD12-8. The second 16 point addresses (16-
31) refer to the 16 channels of the AT16-P attached to channel 1 of the AD12-8, and so on. Thus,
with eight single ended A/D channels, a point address may be as large as 127.

If your are using LVDT8-Ps, then the first eight point address (0-7) refer to the LVDT8-P attached
to channel 0 of the AD12-8. The second eight point addresses are not used (8-15). Thus with eight
single-ended A/D channels, a point address may still be as large as 127, but there would only be a
maximum of 64 LVDT8-P channels.

You may install point addresses into the point list in any order, or with multiple entries for the same
point address. For example the order could be 15-12-12-11-9-127-1-1-0 etc. The order that point
addresses are installed in the point list is the order in which you call the driver to install them. Each
new entry is appended to the end of the list.

A point list index is used by the driver to keep track of which point address is the next to be
converted. After each conversion the index is incremented to the next position in the list. When
the index reaches the end of the list it is automatically reset to the start of the list. If you desire to
set the list index to the start of the list at any time, you may use TASK 11.

The point list is dynamic. During program operation, if you desire to clear the point list and add a
different set of points, this is done quite easily using the tasks provided.

The main advantages of a point list are that conversions can be done in any order and the driver
takes care of setting the AT16-P and/or LVDT8-P channel and the AD12-8 channel, as well as
gains, linearization and scaling.

Other Software Features

The driver provides the ability to use the programmable gain feature of the AT16-P. You may
assign gains to a given point address directly. Each point address may have its own gain code
associated with it. This is useful when differing input ranges are desired using the same AT16-P.

The driver also provides the ability to make a function assignment to each individual point address.
You may assign a thermocouple curve or a scaling range to a point address. Look up tables are
contained in the driver to convert counts to the proper temperature. Reference junction compensa-
tion may also be performed.

Manual Number: 00650-014-4Page 5-2

AD12-8 Manual

The AD12-8 combined with the AT16-P and this driver provide an excellent tool to handle most
kinds of data acquisition signals.

Task Summary

TASK 0: Driver initialization.

TASK 1: Check A/D operations.

TASK 2: Fetch gain code for a given point address.

TASK 3: Fetch point address from the point list.

TASK 4: Assign gain code to a range of point addresses.

TASK 5: Assign range of point addresses to the point list.

TASK 6: Perform conversion of the given point address.

TASK 7: Perform conversion on next point address in the point list.

TASK 8: Perform multiple conversions from the point list using polling.

TASK 9: Perform multiple conversions from the point list using interrupts.

TASK 10: Function assignments.

TASK 11: Reset operations.

TASK 12: Write digital output.

TASK 13: Read digital input.

TASK 14: Load counter/timers.

TASK 15: Read counter/timers.

TASK 16: Fetch single, designated point address, high performance buffered.

TASK 17: Fetch Multiple Points (High Performance), point list and gains are used, but
function assignments are not.

Task Reference

Task 0: Initialize

This task provides the driver with information on the card setup. This task should be called once at
the beginning of the program, before any other tasks are called. If other tasks are called first, they
will return error code 1.

Notes:

1. This task also calls TASK 1 to test if the card is functioning.

2. Disables all interrupt and counter activity.

3. Initializes the point list to have point addresses for each channel of the AD12-8, with none for
the AT16-P or LVDT8-P (i.e. point addresses 0, 16, 32, 48 112).

4. Initializes the function list for each point address to a gain code of 0 and no functions performed
on conversion counts.

5. Information for the setup of the driver may be obtained either from the configuration file or
from the parameters passed to the driver. The configuration file is created by using the SETA12
and SETMUX setup programs, or by a word processor/text editor in the non-document mode.
The driver will read the configuration file and set up the driver accordingly if params[0] = 0.

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-3

Input:

params[0]: Type of initialization

0 = Automatic initialization using the configuration file, no other

 parameters are required.

1 = Manual initialization using information provided in the passed

 parameters.

params[1]: Base Address

params[2]: Interrupt (IRQ) level

params[3]: Voltage range, 5 or 10 volt

params[4]: Input polarity

0 = Unipolar

1 = Bipolar

Output:

Data: NONE

Error Codes:

status = 0: No error.

status = 1; Invalid task number, task > 17 or driver not initialized.

status = 2: Invalid base address, params[0] > 0x3f8 or < 0x200

status = 3: Card does not respond.

status = 15: Voltage range not 5 or 10.

status = 20: Error opening configuration file.

status = 21: Error reading configuration file.

status = 22: Invalid configuration file data.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 0;

params[0] = 1; /* manual initialization */

params[1] = 0x300; /* base address = 300 hex */

params[2] = 3; /* use IRQ3 */

params[3] = 5; /* voltage range is 5 volts */

params[4] = 1; /* bipolar range */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Manual Number: 00650-014-4Page 5-4

AD12-8 Manual

Task 1: Check A/D Operations

This task checks for proper operation of the analog-to-digital converter.

Notes:

1. This task is called internally by the driver when TASK 0 is called.

Input: None

Output:

Data: None

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 1;

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 2: Fetch Gain Code for a Point Address

Returns a previously assigned gain code for a given point address.

Notes: None.

Input:

params[0]: Point address.

Output:

Data: params[1]: Gain code for the given point address.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 5: Invalid point address, or index.

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-5

Example:

int task,params[5],status; /* these are globally declared variables */

task = 2;

params[0] = 14; /* fetch gain code for point address 14*/

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 3: Fetch Point Address for a Point List Index

Returns a previously assigned point address for a given point list index.

Notes: None.

Input:

params[0]: Point list index.

Output:

Data:

params[1]: Point address for the given point list index.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 5: Invalid point address, or index.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 3;

params[0] = 6; /* fetch point address for the 6th point in the point

 list*/

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 4: Assign Gain Code to Range of Point Addresses

Assigns a given gain code to a given range of point addresses.

Notes:

1. The first point address of the range must be less than or equal to the last point address. To assign
a gain code to a single point address, make the first and last point address equal.

2. These gain code settings are only meaningful if the AT16-P is being used.

3. The following are the possible gain codes.

Manual Number: 00650-014-4Page 5-6

AD12-8 Manual

Gain Code
AT16-P Output Range Switch Settings

G/2 OFF G/2 ON

0 GAIN = 1 GAIN = 0.5

1 GAIN = 2 GAIN = 1

2 GAIN = 10 GAIN = 5

3 GAIN = 50 GAIN = 25

4 GAIN = 100 GAIN = 50

5 GAIN = 200 GAIN = 100

6 GAIN = 400 GAIN = 200

7 GAIN = 1000 GAIN = 500

8 Auto Range

4. A gain code of 8 indicates an auto range channel. When the point address is read, the driver will
first read at a gain of 2 (gain code 1), and from this reading, determine the best gain to use for
the second reading to achieve the best resolution.

Input:

params[0]: First point in point address range.

params[1]: Last point in point address range.

params[2]: Gain code to assign.

Output:

Data: None.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 5: Invalid point address, or index.

status = 6: Invalid gain code.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 4;

params[0] = 1; /* first point address in range*/

params[1] = 15; /* last point address in range */

params[2] = 3; /* gain code of 3 */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-7

Task 5: Assign Point Addresses to the Point List

Assigns a range of point addresses to the point list.

Notes:

1. All point addresses added to the point list are appended to the end of the point list, after any that
have been previously added, including the default point address. If you desire to start with an
empty list, then use TASK 11, subtask 2 to clear the point list first.

2. If the first point address is larger than the last point address, then the driver will install them in
descending order.

3. Point addresses that are not on a 16 boundary (0, 16, 32 ,48 etc) are only meaningful if one or
more AT16-Ps or LVDT8-Ps are attached.

Input:

params[0]: First point address in range.

params[1]: Last point address in range.

Output:

Data: None.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 4: Point list error, list full.

status = 5: Invalid point address, or index.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 5;

params[0] = 0; /* first point address in range*/

params[1] = 31; /* last point address in range, two AT16-PS */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Manual Number: 00650-014-4Page 5-8

AD12-8 Manual

Task 6: Fetch Data from a Point Address

Perform a conversion on the point address indicated.

Notes:

1. This task does not use the point list. If you wish to fetch data from the next point in the point
list then use TASK 7.

2. Point addresses that are not on a 16 boundary (0, 16, 32 ,48 etc) are only meaningful if the
AT16-P or LVDT8-P is being used.

Input:

params[0]: Point address to fetch data from.

Output:

Data:

params[1]: Resulting conversion

params[2]: Gain code used.

ERROR CODES:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

status = 5: Invalid point address, or index.

Example:

int task,params[5],status; /* these are globally declared variables */

task =6;

params[0] = 16; /* fetch data from point address */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 7: Fetch Data from Next Point Address in List

Perform a conversion on the point address in the point list indicated by the point list index.

Notes:

1. Each time a point is fetched from the list, the list index is incremented. The list index can be reset
to the start of the point list by using TASK 11, SUBTASK 1

Input: None.

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-9

Output:

Data:

params[0]: Point address converted.

params[1]: Resulting conversion data.

params[2]: Gain code used.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

status = 5: Invalid point address, or index.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 7;

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 8: Fetch Multiple Buffered Conversions

Fetch multiple conversions from the point list, using polling.

Notes:

1. Each time a point is fetched from the list, the list index is incremented. The list index can be reset
to the beginning of the point list by TASK 11, SUBTASK 1.

2. This task uses two buffers, a data buffer and a point/gain buffer. Both buffers should be integer
buffers of the same length. The number of conversions must not exceed the length of the
shortest buffer, or else other areas of computer memory may be corrupted, causing unpredictable
computer behavior. The driver has no criteria to evaluate the validity of the pointer. It is
incumbent upon the application program to supply a valid buffer pointer.

3. The point and gain for each analog input is returned in the point/gain buffer. The point address
and gain are packed into one integer with the point address in the upper eight bits and the gain
in the lower eight bits.

4. The buffers must be declared globally or the driver will not be able to find their segment.

Input:

params[0]: Offset of the data buffer address.

params[1]: Offset of the point/gain buffer address.

params[2]: Number of conversions to make.

Manual Number: 00650-014-4Page 5-10

AD12-8 Manual

Output:

Data:

params[3]: Number of conversions completed.

The buffers will contain the conversions and the point/gain data respectively.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

status = 5: Point list error, list empty.

Example:

int task,params[5],status; /* these are globally declared variables */

int datbuf[100],chnbuf[100]; /* these are globally declared variables */

task = 8;

params[0] = FP_OFF(datbuf); /* pass offset of data buffer */

params[1] = FP_OFF(chnbuf); /* pass offset of point/gain buffer */

params[2] = 100; /* number of conversions */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 9: Interrupt Driven Data Acquisition

Provides subtasks to perform buffered data acquisition using interrupts. Sub task functions include
initiating the interrupt conversions, checking for completion and stopping the interrupt process.

Notes:

1. Each time a point is fetched from the list, the list index is incremented. The list index can be reset
to the beginning of the point list by TASK 11.

2. The initial call to SUBTASK 1 passes a pointer to a data buffer to store he conversion. This
buffer is used as temporary storage by the driver. A subsequent call to SUBTASK 3 will place
the data into two separate buffers; a data buffer for the conversion results and a point/gain
buffer to contain the point address and the gain used for the conversion.

3. The point and gain for each analog input is returned in the point/gain buffer. The point address
and gain are packed into one integer with the point address in the upper eight bits and the gain
in the lower eight bits. Both the data buffer and the point/gain buffer should be integer buffers
of the same length. The number of conversions must not exceed the length of the shortest
buffer or else other areas of computer memory may be corrupted causing unpredictable computer
behavior. The driver has no criteria to evaluate the validity of the pointer. It is incumbent upon
the application program to supply a valid buffer pointer.

4. The data and point/gain buffers must be declared globally or the driver will not be able to find
their segment.

5. This task has several functions, each having its own required parameters.

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-11

6. If the timers are used to generate the start-conversion signals, then they should be configured
using TASK 14, before calling TASK 9.

7. TASK 11, SUBTASK 0 is used to disable interrupts before completion of the scan. When the
scan completes normally, the interrupts are disabled automatically.

8. See Sample 2 for a basic example of how to set up and use interrupts.

Input:

params[0]: Subtask to perform, 1, 2, or 3.

1: Initiate interrupt data acquisition.

params[1]: Interrupt level (IRQ)

params[2]: Number of conversion to make.

params[3]: Offset of the packed data buffer address.

params[4]: Segment of the packed data buffer address.

params[5]: A/D Trigger mode.

2: Check for end of interrupt scan.

3: Return unpacked data

params[1]: Offset of data buffer.

params[2]: Offset of point/gain buffer

params[3]: Number of conversions made

Output:

Data:

SUBTASK 1: The buffers will contain the conversions and the point/gain data respectively.

SUBTASK 2: params[1] = 0 if scan complete, task number if still in progress.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

status = 5: Point error, point list is empty.

status = 7: Invalid number of conversions, not between 1 and 32767.

status = 10: Interrupt task already active.

status = 11: Interrupt not between 2 and 7.

status = 12: Interrupt already unassigned. (SUBTASK 3)

status = 13: Invalid subtask, not 1, 2 or 3.

status = 14: Invalid trigger mode, not 1 or 2.

Manual Number: 00650-014-4Page 5-12

AD12-8 Manual

Example:

int task,params[5],status; /* these are globally declared variables */

int datbuf[100],chnbuf[100]; /* these are globally declared variables */

task = 9;

params[0] = 1; /* initiate interrupt scan */

params[1] = 100; /* do 100 conversions on this scan */

params[2] = FP_OFF(datbuf); /* pass offset of temporary data buffer */

params[3] = FP_SEG(datbuf); /* pass segment of buffer */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

params[0] = 2; /* check for end of scan process */

do

{

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

}

while (params[1] != 0); /* wait until end of scan*/

/* or if you do not want to wait until end of scan */

task = 11

params[0] = 0; /* stop interrupt process sub task */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 10: Thermocouple/Function Assignment

Provides subtasks to assign thermocouple curves and scaling factors to a given point address. A
subtask is also provided to use the thermocouple tables to linearize values passed to it.

Notes:

1. The built-in NBS tables are designed to convert A/D counts to temperature directly. When using
SUBTASK 1, the driver expects the passed counts to be multiplied by 16 if using the bipolar
mode, and multiplied by 8 if using a unipolar mode.

2. Curves are assigned to a point address by calling SUBTASK 2 with the ASCII code of one of
the curves listed in the table that follows. Also, temperature units are assigned in the same
manner.

3. If reference junction compensation using the AT16-P on board sensor is desired, then assign
this sensor to the point list as the first channel of a given AT16-P (ie. 0, 16,32,48 etc). Make
sure that the TMP jumpers are installed on the AT16-P. Finally, assign the curve “T” to this
point address using SUBTASK 2. Any other point addresses on the AT16-P will now be
junction compensated automatically by the driver each time a point address is converted.

4. The reference junction circuit on the AIM-16 card generates 24.4 mV/oC. The counts read in at
a gain of 1 are 2.44 millivolts/count. Thus, each count represents 0.1o C.

5. When thermocouple curves are assigned to a point address, it is also required to set that point
address to a particular gain using TASK 4. These gains are presented in the following table.
Note that two gain codes are presented for each thermocouple type, the one you use will depend
on the setting of the G/2 switch on the AT16-P. If G/2 is OFF, use the lower gain code, if G/
2 is ON then use the higher gain code.

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-13

T/C TYPE GAIN GAIN CODE mVOLTS/COUNT

b 200 5/6 12.207

e 50 3/4 48.828

j 100 4/5 24.414

k 50 3/4 48.828

r 200 5/6 12.207

s 200 5/6 12.207

t 200 5/6 12.207

RTD TYPE GAIN GAIN CODE mVOLTS/COUNT

a 100 4/5 24.414

u 100 4/5 24.414

6. Temperature is returned in increments of 1/10th degree. For example, 100 degrees would be
returned as 1000.

7. SUBTASK 3 can be used to force the driver to return values in units determined by the user
rather than counts. For example, you might desire values returned in millivolts. In such a case,
assuming the bipolar mode, scale factors of -5000 and +5000 would be passed in the call to
SUBTASK 3.

8. For platinum RTD’s, there are two curves; “a” for sensors with 392 alpha and “u” for sensors
with 385 alpha.

9. TASK 10 does not initiate any conversions, but sets up functions that will be performed
automatically whenever conversion are done using tasks 6, 7, 8, 9 or 16.

Input:

params[0]: Subtask to perform, 1, 2, 3 or 4.

1: Perform linearization of the given data.

params[1]: ASCII code for lower case letter of curve, or upper case T for
reference junction.

params[2]: counts (see note 1)

2: Assign thermocouple curve to a point address.

params[1]: point address

params[2]: ASCII code for lower case letter of curve, or upper case T for
reference junction.

params[3]: ASCII code for upper case letter of the desired temperature units,
C or F.

3: Assign scaling factor to a point address.

params[1]: point address

params[2]: Lower scaling term.

params[3]: Upper scaling term.

Manual Number: 00650-014-4Page 5-14

AD12-8 Manual

4: Replicate a point address function assignment to a range of point addresses.

params[1]: source address to replicate

params[2]: first point address in destination range

params[3]: last point address in destination range.

Output:

Data:

SUBTASK 1:

params[3]: temperature in tenths of OF.

params[4]: temperature in tenths of OC.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 20, or driver not initialized.

status = 5: Point error, point address out of range.

status = 13: Invalid subtask, not between 1 and 4.

status = 16: Invalid curve.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 10;

/* linearize the passed value */

params[0] = 1; /* manual linearization subtask */

params[1] = ‘t’; /* for t type thermocouple */

params[2] = 1801;/* counts * 16 at gain of 200 */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

/* values returned in params[3] and params[4] */

/* assign curve to a point address */

params[0] = 2; /* curve assignment subtask */

params[1] = 0; /* first point address on first AT16-P */

params[2] = ‘T’; /* T for reference junction */

params[3] = ‘F’; /* F for degrees F */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));/*call the driver*/

/* assign a range of ±5 volts in millivolt increments to a point address.*/

params[0] = 3; /* range assignment subtask */

params[1] = 22; /* point address to assign */

params[2] = -5000; /* lower range */

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-15

params[3] = 5000;/* upper range */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

/* replicate the assignment for point address 22 to point addresses 23-40 */

params[0] = 4; /* replication subtask */

params[1] = 22; /* source point address to replicate */

params[2] = 23; /* lower point address in destination range */

params[3] = 40; /* upper point address in destination range */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 11: Reset Functions

Performs various reset function on the point list and function/curve assignment tables. Also pro-
vides a subtask to set the sample and hold settle time.

Notes:

1. SUBTASK 5 is provided to set the sample and hold settle time. High speed 80286, 80386, and
80486 computers often will start a conversion before the sample and hold has had time to settle
after changing a channel on the AT16-P. A value of 25-50 is usually sufficient for an 80386
machine.

Input:

params[0]: Subtask to perform, 1, 2, 3, 4 or 5.

1: Reset the point list index to first point address in the point list.

2: Clears all point addresses from the point list.

3: Resets the point list to the default conditions, as described in TASK 0.

4: Clears all curve and scaling assignments.

5: Set the sample and hold settle time.

params[1]: settle time count

Output:

Data: None.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 15: Invalid reset sub task, not between 0 and 5.

Manual Number: 00650-014-4Page 5-16

AD12-8 Manual

Example:

int task,params[5],status; /* these are globally declared variables */

task = 11;

params[0] = 5; /* set settle time sub task */

params[1] = 50; /* settle time count of 50 */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 12: Digital Output

Writes to the digital output bits.

Notes:

1. Output values are not checked for proper range. If a value greater than eight bits is sent, the driver
will only send the lower eight bits.

Input:

params[0]: Value to output.

Output:

Data: None.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 12;

params[0] = 15; /* set first 4 output bits high */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 13: Digital Input

Reads the digital input bits.

Notes:

1. Returns the eight bit digital value read from the card digital input register.

Input: None.

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-17

Output:

Data: params[1]: Digital input value.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 13;

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 14: Counter/Timer Setup

Load the given counter/timer with a count value and mode.

Notes:

1. For a complete discussion of the counter/timers, see CHAPTER 8: PROGRAMMABLE
INTERVAL TIMER .

Input:

params[0]: counter number 0, 1 or 2.

params[1]: counter mode, between 0 and 5.

params[2]: counter load count.

Output:

Data: None.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 8: Invalid counter, not 0, 1 or 2.

status = 9: Invalid counter mode, not between 0 and 5.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 14;

params[0] = 1; /* counter 1 */

Manual Number: 00650-014-4Page 5-18

AD12-8 Manual

params[1] = 3; /* counter mode 3, square wave generator */

params[2] = 100; /* counter load value, acts as divide by 100 */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 15: Read Counter/Timer Count

Reads the count of the given counter/timer.

Notes:

1. For a complete discussion of the counter/timers, see CHAPTER EIGHT: PROGRAM-
MABLE INTERVAL TIMER .

2. Counter/timer is latched before read.

Input:

params[0]: counter number 0, 1 or 2.

Output:

Data:

params[1]: counter/timer count.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 8: Invalid counter, not 0, 1 or 2.

Example:

int task,params[5],status; /* these are globally declared variables */

task = 15;

params[0] = 1; /* counter 1 */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 16: High Speed Conversions, Single Point Address

Fetch multiple conversions a single point.

Notes:

1. This task will use the gain set up in TASK 4, or the function assignments set up in TASK 10.

2. This task uses a single data buffer. The number of conversions must not exceed the length of
the buffer, or else other areas of computer memory may be corrupted, causing unpredictable
computer behavior. The driver has no criteria to evaluate the validity of the pointer. It is
incumbent upon the application program to supply a valid buffer pointer.

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-19

3. The buffer must be declared globally or the driver will not be able to find its segment.

Input:

params[0]: Offset of the data buffer address.

params[1]: Number of conversions to make.

params[2]: Point address to convert.

Output:

Data:

params[3]: Number of conversions completed.

The buffer will contain the conversions.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

Example:

int task,params[7],status; /* these are globally declared variables */

int datbuf[100],chnbuf[100]; /* these are globally declared variables */

task = 16;

params[0] = FP_OFF(datbuf); /* pass offset of data buffer */

params[1] = 100; /* number of conversions */

params[2] = 5; /* channel 5 on the first AT16-P */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Task 17: High Speed Conversions, Multiple Point Addresses

Fetch multiple conversions from the point list using pipelining features of the AD12-8.

Notes:

1. The point list is used to determine which point addresses to convert.

2. This task will use the gain set up in TASK 4, but will not use the function assignments set up
in TASK 10.

3. This task uses two buffers, a data buffer and a point/gain buffer. Both buffers should be integer
buffers of the same length. The number of conversions must not exceed the length of the
shortest buffer, or else other areas of computer memory may be corrupted, causing unpredictable
computer behavior. The driver has no criteria to evaluate the validity of the pointer. It is
incumbent upon the application program to supply a valid buffer pointer.

4. The point and gain for each analog input is returned in the point/gain buffer. The point address
and gain are packed into one integer with the point address in the upper eight bits and the gain
in the lower eight bits.

Manual Number: 00650-014-4Page 5-20

AD12-8 Manual

5. The buffers must be declared globally or the driver will not be able to find their segment.

6. Using this task, a 25MHz “386” computer will achieve throughput approaching 34,000 samples
per second.

Input:

params[0]: Offset of the data buffer address.

params[1]: Offset of the point/gain buffer address.

params[2]: Number of conversion to make.

Output:

Data:

params[3]: Number of conversions completed.

The buffers will contain the conversions and the point/gain data respectively.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

status = 5: Point list error, list empty.

Example:

int task,params[5],status; /* these are globally declared variables */

int datbuf[100],chnbuf[100]; /* these are globally declared variables */

task = 16;

params[0] = FP_OFF(datbuf); /* pass offset of data buffer */

params[1] = FP_OFF(chnbuf); /* pass offset of point/gain buffer */

params[2] = 100; /* number of conversions */

a12drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

Chapter 5: AD12-8 Driver Reference

Manual Number: 00650-014-4 Page 5-21

Summary of Error Codes

1: Invalid task number: The task number does not fall within the range of 0 through 17. This error
code also occurs if any task is selected before a successful initialization with TASK 0.

2: Invalid base address: The base I/O address does not fall within the range of 100 hex through
3F8 hex.

3: A/D failed: The EOC (end-of-conversion) signal did not change state. This is usually because
the base address has not been set properly.

4: Point list is full: The point list can only hold 128 entries.

5: Invalid point address: The point address does not fall within the range of 0 through 127.

6: Invalid gain code: The gain code does not fall within the range of 0 through 8.

7: Invalid TASK 11 subtask: The subtask does not fall within the range of 0 through 5.

8: Invalid counter/timer number: The counter/timer number is not 0, 1 or 2.

9: Invalid mode: The counter/timer mode does not fall within the range of 0 through 5.

10: Interrupt process already set: The interrupt process can only be set up once. A subsequent
request has been made to set up the interrupt process without previously resetting the mode.

11: Invalid interrupt number: The interrupt number does not fall within the range of 2 through 7.

12: No interrupt process is set: A request has been made to reset an interrupt process that has not
previously been set.

13: Invalid SUBTASK number: SUBTASK specified is outside the valid range for a given task.

14: Invalid data buffer: Data buffer is not valid for interrupt driven data acquisition.

15: Invalid voltage range: Voltage range specified should be either 5 or 10 volts.

16: Invalid curve specified: The curve code letter specified is not a valid code.

17: Invalid A/D channel number.

18: Invalid temperature units: Temperature units not degrees F or C.

19: Unused.

20: Error opening configuration file.

21: Error reading configuration file.

22: Configuration file data are not correct.

Chapter 6: AD12-8 Windows Driver Reference

Manual Number: 00650-014-4 Page 6-1

Chapter 6: AD12-8 Windows Driver Reference

Driver Features

The Windows driver is implemented as a dynamic-link-library(DLL). There is no need to explic-
itly link this driver to your application, this linkage is performed at run-time by Windows.

There is a single point list in the driver. Thus, your point list can read points in the system in any
desired order. For more information on point lists, read the section in Chapter 5, entitled The
Point List Concept.

This driver supports thermocouples of types “B”,“E”,“J”,“K”,“R”,“S” and “T”. (The driver also
supports both 385 and 392 alpha RTDs.) You may use these thermocouples at any gain supported
by the AT16-P and the driver will compensate accordingly. Also, support for the AT16-P reference
junction is provided. The reference junction may be assigned to channel 0 of its AT16-P or to a
dedicated AD12-8 channel. If you assign the reference junction to a discrete AD12-8 channel, the
driver provides the means to indicate which AT16-P to apply the reference compensation.

You may find using the auto-configuration feature of the driver helpful and time saving. Use the
setup program provided to configure the card the way you intend to use it, then use auto-configura-
tion when you initialize the driver. All points will be set up for gain and curves, and, installed in the
point list.

Using the Driver

The following are the steps that you should take to use the driver with your application. The driver
has been tested with Microsoft Visual BASIC, version 3.0 and Borland C/C++, version 3.1 compil-
ers. The discussion that follows is intended for those compilers, but the principles should apply to
any compiler that uses the Pascal calling convention.

Tell your application about the driver. The application needs to know the function prototypes of
the routines in the driver that you will use.

In C or C++, the function prototype will look like the example below.

extern “C” int PASCAL AD128_Init(int config,int addr,int range);

The extern “C” portion of the declaration tells the compiler not to use the C++ type of function call.
C++ and C function calls are not compatible. A file that defines all function prototypes for the
driver, as well as useful constants, is included in the CPPWIN directory. You may include this file
in your own application. Place the line of code below in the main global module of your program.

#include “A12DRV.H”

In Borland C/C++, you must also add the file A12DRV.LIB to your project file. See your docu-
mentation for creating and managing a project file.

In Visual BASIC, all that is needed is the function prototype which will look like the example on
the next page.

Manual Number: 00650-014-4Page 6-2

AD12-8 Manual

Declare Function AD128_Init Lib “c:\ad128s\vbwin\a12drv.dll” (ByVal config As
Integer, ByVal BaseAddr As Integer, ByVal range As Integer, card As Integer) As
Integer

The above function prototype is written on multiple lines in this manual but, in Visual BASIC, the
entire function prototype must appear on a single line. A file is included in the VBWIN directory
that declares all functions and provides useful constants. Add the file A12DRV.GBL to your
Visual BASIC project file. See your Visual BASIC manuals for information on project files.

You should place a copy of the A12DRV.DLL file in your working directory. In Visual BASIC, the
function prototypes contain a path name so that Windows will know where to find the DLL. The
A12DRV.GBL file function prototypes are configured for the default installation directory struc-
ture. If you change the defaults, then you must edit the A12DRV.GBL file to reflect the location of
the DLL.

Initialize the driver . Now that the application knows about the driver, you must initialize the
driver for operation. This is done with a call to the AD128_Init function. The driver may not work
properly if you make any other driver calls before the AD128_Init call.

Setup the configuration for all points in your system. Each point in the system must be config-
ured using the AD128_SetPointConfig call. This call allows you to set various options for con-
versions, such as scaling, curves and gains. If you need to set up a sequential series of points with
the same configuration, a single call will suffice, using the start and stop parameter to define the
range of points. The driver will return an error if you attempt to convert a point before setting it up
with a call to AD128_SetPointConfig.

Install the desired points into the point list. There is a single point list in the system. The point
list will still allow you to install points in any order you desire.

Use of the point list is optional. Conversions may be made by direct access to any point in the
system. Also, if the point list is used, direct access to a given point is still available. Points are
added the point list by calls to AD128_AddPoints. This routine will append the range of points
indicated to the end of the existing point list, or if the point list is empty, create a point list.

Perform conversions. Several routines are provided to perform A/D conversions.
AD128_GetDirectPoint is used for direct conversions, without the point list, to convert a single
designated point address. AD128_GetIndexPoint performs a single conversion on a given point
index. The point index indicates which point in the list to convert. AD128_GetNextPoint per-
forms a single conversion on the next point in the point list, then increments the point list index.
The next call to AD128_GetNextPoint will then convert the next point.

AD128_PollScan converts a series of points from the point list and stores the conversions in an
internal buffer. A subsequent call to AD128_PostProcess will process the data for curve and
scaling functions and then transfer them to a buffer provided by your program. Post processing is
used to increase the system throughput.

AD128_IRQScan is similar to AD128_PollScan except that interrupts are generated by the AD12-
8 at the end of each conversion, rather than using a polling methodology to determine the end-of-
conversion.

Use of other functions. Other functions can be called to control the digital bits and counters in the
same manner as calls to the A/D routines.

Chapter 6: AD12-8 Windows Driver Reference

Manual Number: 00650-014-4 Page 6-3

Task Summary

AD128_Init: Initializes the driver.

AD128_Shutdown: Terminates the driver and frees all Windows resources.

AD128_SetPointConfig: Configures a range of points.

AD128_FetchPointConfig: Fetches the configuration for a given point.

AD128_AddPoints: Adds a range of points to the point list.

AD128_ResetListIndex: Sets the point list index to the top of the list.

AD128_ClearPointList: Clears all points from the point list.

AD128_DelPtListIndexes: Deletes range of point list indexes from the point list.

AD128_SetSettleTime: Set the sample-and-hold settle time.

AD128_GetNextPoint: Converts the next point in the list as indicated by the list index.

AD128_GetIndexPoint: Converts a point in the list based on a provided list index.

AD128_GetDirectPoint: Converts a point directly using the supplied point address.

AD128_IRQStatus: Checks the status of an active interrupt process.

AD128_IRQTerminate: Terminates an active interrupt process.

AD128_IRQScan: Performs buffered data acquisition using interrupts.

AD128_PollScan: Performs buffered data acquisition using polling.

AD128_PostProcess: Processes and returns data from a batch process.

AD128_FetchLastGain: Fetches the last gain used for conversion of a given point.

AD128_DigitalOut: Writes to the digital output bits.

AD128_DigitalIn: Read from the digital input bits.

AD128_SetCounter: Sets up a given counter.

AD128_ReadCounter: Reads back a given counter.

AD128_RateGenerator: Generates a given frequency from the counter 1/2 pair.

AD128_DisableCounter: Disables a given counter.

AD128_MeasureFreq: Measures frequency.

AD128_MeasurePeriod: Measures period.

Task Reference

AD128_Init

Function: Initializes the driver, and sets up the data structures.

Syntax:

Visual BASIC: AD128_Init(Byval config as Integer, Byval addr as Integer, Byval range as
Integer,) as Integer

C: int PASCAL AD128_Init(int config,int addr,int range);

config: If config = 0, the calling program will configure channel information for the
card by making calls to the driver functions to set up the point list, gains,
functions etc. If config = 1, the configuration information is fetched from
the file called setup.cfg.

addr: The base address for this card. The base address should be between 200 and
3F8 hex.

Manual Number: 00650-014-4Page 6-4

AD12-8 Manual

range: If range = 0, the voltage range is bipolar 5 volts, if range = 1, bipolar 10
volts or if range = 2, unipolar 5 volt.

Notes: This function needs to be called once.

Error Codes: INVALID_PTR: The card_number pointer was not valid.

CONFIG_CODE: The auto-config parameter was not 0 or 1.

BASE_ADDRESS: The base address is not >= 200 and <= 3f8.

VOLTAGE_RANGE: The voltage range was not 1,2 or 3.

WINDOWSERROR: Problem allocating Windows memory.

CARD_INACTIVE The card did not respond to a test.

AD128_SUCCESS: Operation was performed without error.

AD128_Shutdown

Function: Releases all data structures used by the driver.

Syntax:

Visual BASIC: AD128_Shutdown() as Integer

C: int PASCAL AD128_Shutdown();

Notes: This function needs only to be called once, immediately before your
programs exists.

Error Codes: AD128_SUCCESS: Operation was performed without error.

AD128_SetPointConfig

Function: Initializes a range of points for curve, scaling, gain and units.

Syntax:

Visual BASIC: AD128_SetPointConfig(Byval start as Integer,Byval stop as Integer,

Byval curve as Integer, Byval low as Single,Byval hi as Single,

Byval units as Integer, Byval gain as Integer,

Byval ref_channel as Integer) as integer

C: int PASCAL AD128_SetPointConfig(int start,int stop,int curve float low,
float hi,int units,int gain,int ref_channel);

start: Starting point address in the range of points.

stop: Ending point address in the range of points.

curve: An ASCII “b”,“e”,“j”,“k”,“r”,“s”,“t” indicates that the respective points
are to be installed for that particular thermocouple type. A “T” indicates
that the point (s) are for reference junction compensation. A “a” or “u”
represents 392 and 385 alpha type RTD’s respectively. If no curve is
desired, the curve variable should be zero.

low: Lower value in the scaling range.

hi: Upper value in the scaling range.

units: A zero indicates oC and a one indicates oF.

gain: Gain code for the point range. The chart below lists the possible gain codes
and their respective gains.

Chapter 6: AD12-8 Windows Driver Reference

Manual Number: 00650-014-4 Page 6-5

Gain Code
AT16-P Output Range Switch Settings

G/2 OFF G/2 ON

0 GAIN = 1 GAIN = 0.5

1 GAIN = 2 GAIN = 1

2 GAIN = 10 GAIN = 5

3 GAIN = 50 GAIN = 25

4 GAIN = 100 GAIN = 50

5 GAIN = 200 GAIN = 100

6 GAIN = 400 GAIN = 200

7 GAIN = 1000 GAIN = 500

8 Auto Range

ref_channel: If the curve type is “T” for reference junction compensation, the A/D
channel that the reference junction compensation should be applied to is
passed here. For example if a zero is passed for this parameter, then all
AT16-P channels attached to AD12-8 channel 0 will be compensated,
provided they are set up as thermocouples.

Notes:

If no scaling is desired, than pass zero for the hi and low parameters.

If a curve is desired, then it is recommended that you do not use scaling. If values are passed for hi
and low, then the driver will scale the results, after the temperature conversion.

The bipolar 5 volt range is recommended for thermocouples.

The following chart on the next page indicates the recommended gain for each thermocouple type.
You are not restricted to these values, the driver will compensate for any gain code you desire. If
you do not use the recommended gains however, a small round off error may result.

The auto-range gain code causes the driver to take an initial sample at a gain of two, then from the
result, determine the best gain to use to obtain the best resolution.

Manual Number: 00650-014-4Page 6-6

AD12-8 Manual

T/C TYPE GAIN GAIN CODE mVOLTS/COUNT

b 200 5/6 12.207

e 50 3/4 48.828

j 100 4/5 24.414

k 50 3/4 48.828

r 200 5/6 12.207

s 200 5/6 12.207

t 200 5/6 12.207

RTD TYPE GAIN GAIN CODE mVOLTS/COUNT

a 100 4/5 24.414

u 100 4/5 24.414

Error Codes: POINT_ERROR: One or both point addresses are > 127.

CHANNEL_ERROR: The reference channel is not from zero to eight.

GAIN_ERROR: The gain code is not from zero to eight.

UNIT_ERROR: The units parameter is not zero or one.

CURVE_ERROR: The curve parameter is not valid.

AD128_SUCCESS: Operation was performed without error.

AD128_FetchPointConfig

Function: Returns the values previously set up for a given point.

Syntax:

Visual BASIC: AD128_FetchPointConfig(Byval addr as integer, curve as Integer, low as
Single, hi as Single, units as Integer, gain as Integer) as Integer

C: int PASCAL AD128_FetchPointConfig(int addr,int curve, float low, float
hi, int units,int gain);

addr: Point address of the desired point configuration.

curve: An integer point to return the ASCII code of the curve.

low: Float pointer to return lower scaling value.

hi: Float pointer to return upper scaling value.

units: Integer pointer to return temperature units. A zero indicates degrees C and
a one indicates degrees F.

gain: Integer to return gain code.

Notes: None.

Error Codes: INVALID_PTR: One or more of the return pointers is invalid.

Chapter 6: AD12-8 Windows Driver Reference

Manual Number: 00650-014-4 Page 6-7

AD128_AddPoints

Function: Adds a range of points to the point list.

Syntax:

Visual BASIC: AD128_AddPoints(Byval start as Integer, Byval stop as Integer)

as Integer

C: int PASCAL AD128_AddPoints(int start,int stop);

start: Beginning point address of the range.

stop: Ending point address of the range.

Notes: If the starting point address is greater than the stop point address, the points
are installed into the point list in reverse order.

Error Codes: POINT_ERROR: start or stop is not between 0 and 128.

WINDOWSERROR: A memory error occurred in Windows.

AD128_SUCCESS: Operation was performed without error.

AD128_ResetListIndex

Function: Resets the point list index pointer to the first point in the point list.

Syntax:

Visual BASIC: AD128_ResetListIndex() as Integer

C: int PASCAL AD128_ResetListIndex();

Notes: This function is relevant to programs that are performing one conversion
from the point list at a time, rather than a batch process such as polling.
Single conversion routines that use the point list use the point list index to
determine the next point to convert.

Error Codes: AD128_SUCCESS: Operation was performed without error.

AD128_ClearPointList

Function: Removes all points from the point list, all point list pointers are set to NULL
and all memory used by the point list is freed.

Syntax:

Visual BASIC: AD128_ClearPointList() as Integer

C: int PASCAL int PASCAL AD128_ClearPointList();

Notes: None.

Error Codes: AD128_SUCCESS: Operation was performed without error.

Manual Number: 00650-014-4Page 6-8

AD12-8 Manual

AD128_DelPtListIndexes

Function: Removes all points from the point list, between a start and stop point list
index.

Syntax:

Visual BASIC: AD128_DelPtListIndexes(Byval start as Integer, Byval stop as Integer) as
Integer

C: int PASCAL AD128_DelPtListIndexes(int start,int stop);

start: Starting point in the point list index range.

stop: Ending point in the point list index range.

Notes: The start and stop parameters are NOT point addresses, but indexes into
the point list. If start is 5 and stop is 10, then the fifth through tenth point
in the list will be removed.

Error Codes: AD128_SUCCESS: Operation was performed without error.

AD128_SetSettleTime

Function: Sets the sample-and-hold settle time delay for the AT16-P.

Syntax:

Visual BASIC: AD128_SetSettleTime(Byval settle as Integer) as Integer

C: int PASCAL AD128_SetSettleTime(unsigned settle);

settle: Number of settle time counts.

Notes: The sample-and-hold settle time is primarily intended for when an AT16-
P is used in the system. When there is to be a significant change for the gain
used in the preceding conversion, the sample-and-hold circuitry many need
extra time to sample. This is normally in cases when the gains vary widely
from channel-to-channel. Symptoms of a need for this extra time are when
the values returned by the driver seem to be close, but not as accurate as
expected. To determine the amount of extra time needed, start with 25 and
vary the number that yields the expected accuracy. The number should be
as small as practicable so as not to adversely affect throughput of the system.

Error Codes: AD128_SUCCESS: Operation was performed without error.

AD128_GetNextPoint

Function: Performs an A/D conversion on the next point in the point list, and
increments the point list index to the next position in the point list.

Syntax:

Visual BASIC: AD128_GetNextPoint(addr as Integer, result as Single) as Integer

C: int PASCAL AD128_GetNextPoint(int *addr,float *result);

*addr: Pointer for the driver to return the point address of the converted point.

*result: A floating point pointer to return the results of the conversion.

Notes: The value returned has all curve functions and scaling applied to the result.

Error Codes: INVALID_PTR: One or more of the return pointers is invalid.

LIST_EMPTY: The point list has not points in it.

Chapter 6: AD12-8 Windows Driver Reference

Manual Number: 00650-014-4 Page 6-9

POINT_UNINSTALL: The next point in the point list has not been
installed with a call to AD128_SetPointConfig().

CARD_INACTIVE: The card does not respond, no end-of-conversion.

AD128_SUCCESS: Operation was performed without error.

AD128_GetIndexPoint

Function: Performs an A/D conversion on a given point in the point list.

Syntax:

Visual BASIC: AD128_GetIndexPoint(Byval index as Integer, addr as Integer, result as
Single) as Integer

C: int PASCAL AD128_GetIndexPoint(int index,int *addr,float *result);

index: The location of the point in the point list to convert.

*addr: Pointer for the driver to return the point address of the converted point.

*result: A floating point pointer to return the results of the conversion.

Notes: The value returned has all curve functions and scaling applied to the result.

The index parameter represents a position in the point list rather than a point
address. For instance, if a 5 is passed, then the fifth entry in the point list
is converted.

Error Codes: INVALID_PTR: One or more of the return pointers is invalid.

LIST_ERROR: The point location was not found.

POINT_UNINSTALL: The next point in the point list has not been
installed with a call to AD128_SetPointConfig().

CARD_INACTIVE: The card does not respond, no end-of-conversion.

AD128_SUCCESS: Operation was performed without error.

AD128_GetDirectPoint

Function: Performs an A/D conversion on a given point address.

Syntax:

Visual BASIC: AD128_GetDirectPoint(Byval addr as Integer, result as Single) as Integer

C: int PASCAL AD128_GetDirectPoint(int addr,float *result);

addr: The point address of the point to convert.

*result: A floating point pointer to return the results of the conversion.

Notes: The value returned has all curve functions and scaling applied to the result.

The point list is not used. The routine converts the point address passed.

Error Codes: INVALID_PTR: One or more of the return pointers is invalid.

POINT_UNINSTALL: The next point in the point list has not been
installed with a call to AD128_SetPointConfig().

CARD_INACTIVE: The card does not respond, no EOC.

AD128_SUCCESS: Operation was performed without error.

Manual Number: 00650-014-4Page 6-10

AD12-8 Manual

AD128_IRQTerminate

Function: Terminates an active interrupt process.

Syntax:

Visual BASIC: AD128_IRQTerminate() as Integer

C: int PASCAL AD128_Terminate();

Notes: The value returned has all curve functions and scaling applied to the result.

Error Codes: IRQ_UNINSTALL: No interrupt process is active.

AD128_SUCCESS: Operation was performed without error.

AD128_IRQStatus

Function: Returns the status of a pending interrupt process.

Syntax:

Visual BASIC: AD128_IRQStatus(scan as Integer, conv as Integer) as Integer

C: int PASCAL AD128_IRQStatus(int *scan,int *conv);

*scan: Pointer for the driver to return the number of scans completed so far.

*conv: Pointer for the driver to return the number of conversions completed during
the current scan.

Notes: When the values returned in scan and conv are greater than or equal to the
values you passed to AD128_IRQScan, then the process is complete.

Error Codes: INVALID_PTR: One or more of the return pointers is invalid.

AD128_SUCCESS: Operation was performed without error.

AD128_IRQScan

Function: Scans a portion, or the entire point list a given number of times. This is a
batch process that will read a conversion on each interrupt that is generated.
The interrupts are generated by the EOC signal.

Syntax:

Visual BASIC: AD128_IRQScan(Byval scans as Integer, Byval convs as Integer,

Byval index as Integer, Byval IRQ as integer, Byval process as integer,
Byval hWnd as integer) as Integer

C: int PASCAL AD128_IRQScan(int scans,int convs,int index,unsigned IRQ,
unsigned process, HWND hWnd);scans:The number of conversion scans
of the point list to perform.

convs: The number of conversions to perform per scan.

indinyuydex:ex: The starting index of the point list.

IRQ: The IRQ level to use.

process: The source of start conversion, if 0 then software start, 1 is timer and 2 is
external.

hWnd: A handle to the calling window.

Chapter 6: AD12-8 Windows Driver Reference

Manual Number: 00650-014-4 Page 6-11

Notes:

The total number of conversions taken is equal to the scans parameter multiplied by the convs
parameter.

After setting up the process, AD128_IRQScan will exit, before conversions are complete. The
process will run as a background task.

Desired portions of the point list may be converted by setting the index parameter. The index
parameter is a numerical value that indicates which position in the point list to start each scan.
Each succeeding scan will start at this point in the point list. To start at the beginning of the point
list use a zero for this parameter.

For the source of start conversions, you may pass one of the provided constants that are located in
the include files, A12DRV.H for C and A12DRV.GBL for Visual BASIC. The constants are SOFT-
WARE, TIMER (TTIMER for Visual BASIC) and EXTERNAL .

If the counter/timer is to be used to start conversions, then before calling the AD128_IRQScan
routine, you should set up the timers by using AD128_RateGenerator to set the desired conver-
sion frequency.

If a window handle is passed in the hWnd parameter, than the driver will post a message to that
window upon completion of all conversions. If you do not wish to use this feature, pass a 0 in
Visual BASIC or a NULL in C. Alternatively, you may poll from time-to-time to check if all
conversions are complete by calling AD128_IRQStatus.

The data taken are stored in the driver with no curve functions or scaling performed. After calling
this routine, a call to AD128_PostProcess() will return the data with all functions and scaling
performed. The call to AD128_PostProcess() should have identical values for scans, convs and
index as the call to AD128_ IRQScan().

Error Codes:

LIST_EMPTY: The point list is empty.

INVALID_CONV: The scans and/or convs parameter < 1.

INVALID_IRQ: The IRQ parameter is not <= 2 and <= 7.

PROCESS_ERROR: Start conversion source is not 0, 1, 2.

ACTIVE_PROCESS: A batch process is currently active in the driver.

WINDOWSERROR: A Windows related error occurred.

LIST_ERROR: An error occurred traversing the point list.

AD128_SUCCESS: Operation was performed without error.

AD128_PollScan

Function: Scans a portion, or the entire point list a given number of times. This is a
batch process that will poll the card until each conversion is complete.

Syntax:

Visual BASIC: AD128_PollScan(Byval scans as Integer, Byval convs as Integer, Byval
index as Integer) as Integer

Manual Number: 00650-014-4Page 6-12

AD12-8 Manual

C: int PASCAL AD128_PollScan(int scans,int convs,int index);

scans: The number of scans of the point list to perform.

convs: The number of points to convert.

index: The first point in the point list to be scanned

Notes:

The total number of conversions taken is equal to the scans parameter multiplied by the convs
parameter.

Desired portions of the point list may be converted by setting the index parameter. The index
parameter is a numerical value that indicates which position in the point list to start each scan.
Each succeeding scan will start at this point in the point list. To start at the beginning of the point
list use a zero for this parameter.

This routine will not exit until the entire process is complete.

The data taken are stored in the driver with no curve functions or scaling performed. After calling
this routine, a call to AD128_PostProcess() will return the data with all functions and scaling
performed. The call to AD128_PostProcess() should have identical values for scans, convs and
index as the call to AD128_ PollScan().

Error Codes:

LIST_EMPTY: The point list is empty.

INVALID_CONV: The scans and/or convs parameter < 1.

ACTIVE_PROCESS: A batch process is currently active in the driver.

WINDOWSERROR: A Windows related error occurred.

LIST_ERROR: An error occurred traversing the point list.

POINT_UNINSTALL: The next point in the point list has not been installed with a call to
AD128_AddPoints().

CARD_INACTIVE: The card does not respond, no end-of-conversion.

AD128_SUCCESS : Operation was performed without error.

AD128_PostProcess

Function: Takes conversions stored in the driver’s internal buffer, performs curve
functions and scaling on the data, and transfers the results to another buffer
supplied by the caller.

Syntax:

Visual BASIC: AD128_PostProcess(Byval scans as Integer, Byval convs as Integer, Byval
index as Integer, buffer(0) as Single) as Integer

C: int PASCAL AD128_PostProcess(int scans,int convs,int index,float
*buffer);

scans: The number of conversion scans of the point list to perform.

convs: The number of conversion to perform per scan.

index: The starting index of the point list.

Chapter 6: AD12-8 Windows Driver Reference

Manual Number: 00650-014-4 Page 6-13

*buffer: Point to a floating point data buffer where the driver can place the results.

Notes:

The total number of transfers made is equal to the scans parameter multiplied by the convs param-
eter.

The function is used to transfer data taken in a batch process, such as AD128_PollScan(). It will
perform all curve and scaling for each point of data taken in the batch process.

Error Codes:

BUFFER_EMPTY: The driver’s internal data buffer is empty.

LIST_EMPTY: The point list is empty.

INVALID_CONV: The scans and/or convs parameter is > 1.

WINDOWSERROR: A Windows related error occurred.

LIST_ERROR: An error occurred traversing the point list.

INVALID_BUFFER: Pointer to a buffer to return the processed data.

POINT_UNINSTALL: The next point in the point list has not been installed with a call to
AD128_SetPointConfig().

CARD_INACTIVE: The card does not respond, no EOC.

AD128_SUCCESS: Operation was performed without error.

AD128_FetchLastGain

Function: Fetches the last gain code used for a given point.

Syntax:

Visual BASIC: AD128_FetchLastGain(Byval addr as Integer, gain as Integer) as Integer

C: int PASCAL AD128_FetchLastGain(int addr,int *gain);

addr: The point address of the desired point.

*gain: A pointer to a integer for the return of the gain code.

Notes: This function is mainly useful in cases where points have been assigned an
auto gain code. This is the only way for a user program to determine the gain
used for a point that has been set to auto gain

Error Codes: INVALID_PTR: The gain code pointer is invalid.

AD128_SUCCESS: Operation was performed without error.

AD128_DigitalOut

Function: Writes a byte out to the digital output port.

Syntax:

Visual BASIC: AD128_DigitalOut(Byval value as Integer) as Integer

C: int PASCAL AD128_DigitalOut(int value);

value: The value to write to the digital output port.

Notes: Even though the value parameter is a 16 bit value, the driver will only use
the lower eight bits of the number.

Manual Number: 00650-014-4Page 6-14

AD12-8 Manual

Each bit position in the eight bits used is one digital output bit.

The direction of the eight digital bits on the AD12-8 is programmable by
jumper selection on the card. See CHAPTER 3: HARDWARE
CONFIGURATION AND INSTALLATION for details.

Error Codes: AD128_SUCCESS: Operation was performed without error.

AD128_DigitalIn

Function: Reads a byte from the digital input port.

Syntax:

Visual BASIC: AD128_DigitalIn(value as Integer) as Integer

C: int PASCAL AD128_DigitalIn(int *value);

*value: Pointer to return the value read from the digital input port.

Notes: Even though the value parameter is a 16 bit value, the driver will only use
the lower eight bits of the number.

Each bit position in the eight bits used is one digital output bit.

The direction of the eight digital bits on the AD12-8 is programmable by
jumper selection on the card. See CHAPTER THREE: HARDWARE
CONFIGURATION AND INSTALLATION for details.

Error Codes: INVALID_PTR: The gain code pointer is invalid.

AD128_SUCCESS: Operation was performed without error.

AD128_SetCounter

Function: Set up the indicated counter.

Syntax:

Visual BASIC: AD128_SetCounter(Byval counter as Integer, Byval mode as Integer,
Byval loadvalue as integer, Byval bcd as integer) as Integer

C: int PASCAL AD128_SetCounter(int counter,int mode, unsigned loadvalue,
int bcd);

counter: Counter number to set up.

mode: Counter mode, possible values are 0 to 5.

loadvalue: Initial counter load contents.

bcd: Number system to count by. If bcd = 1 then counter counts in BCD if 0,
counter counts in binary.

Notes: The counter will begin counting whenever its gate is brought and held high.

For a more complete discussion of the counter/timers please see CHAPTER
8: PROGRAMMABLE INTERVAL TIMER .

Error Codes: INVALID_COUNTER:Counter number is not 0,1 or 2.

INVALID_MODE: Counter mode is not 0 through 5.

AD128_SUCCESS: Operation was performed without error.

Chapter 6: AD12-8 Windows Driver Reference

Manual Number: 00650-014-4 Page 6-15

AD128_MeasureFreq

Function: Measures an unknown frequency.

Syntax:

Visual BASIC: AD128_MeasureFreq(Byval range as Integer, freq as Single) as Integer

C: int PASCAL AD128_MeasureFreq(int range,float *freq);

range: Range of the unknown frequency.

*freq: Pointer to return the measured frequency.

Notes: The following external connections are required:

1. The counter 1 output, pin 23 should be connected to digital input
bit 0, pin 25, and to the gate of counter 0, pin 21.

2. The unknown frequency should be connected between the clock of
counter 0, pin 2, and digital ground, pin 11.

Use range = 0, if the unknown frequency is less than 500KHz. Use range
= 1 for frequencies greater than 500KHz, and up to 2.6MHz.

The error of this function at 1Khz is 3%, and increases rapidly for
frequencies less than 1KHz. As frequencies increase above 1KHz, the error
decreases, for example at 10KHz, the error is only 0.3%.

The frequency range for this function is 0.001 to 100kHz.

Error Codes: AD128_SUCCESS: Operation was performed without error.

INVALID_PTR: The point to return the frequency was not valid.

AD128_MeasurePeriod

Function: Measures an unknown period.

Syntax:

Visual BASIC: AD128_MeasurePeriod(Byval range as Integer, period as Single) as Integer

C: int PASCAL AD128_MeasurePeriod(int range,float *period);

range: Range of the unknown frequency.

*period: Pointer to return the measured frequency.

Notes: See AD128_MeasureFreq for setup and usage instruction, as this function
is an inverse of AD128_MeasureFreq().

Error Codes: AD128_SUCCESS: Operation was performed without error.

INVALID_PTR: The point to return the period was not valid.

Summary of Error Codes

0: AD128_SUCCESS: The function was completed without error.

1: RESERVED

2: CONFIG_CODE: A configuration code passed to the initialization routine was not a
0 for manual configuration or a 1 for auto configuration.

3: BASE_ADDRESS: The base address provided to the driver was not between 200 hex
and 3F8 hex.

Manual Number: 00650-014-4Page 6-16

AD12-8 Manual

4: VOLTAGE_RANGE: The voltage range code was not 0 for bipolar 5V, 1 for bipolar 10V
or 2 for unipolar 10V.

5: CARD_INACTIVE: The AD12-8 does not respond to commands, probably because the
base address passed to the driver is not correct, or it is set
incorrectly on the card.

6: RESERVED

7: POINT_ERROR: The point address passed is < 0 or > 127.

8: POINT_INSTALL: A point address passed to the driver for conversion or to be placed
into the point list has not been installed.

9: LIST_EMPTY: A function using the point list was called before any points were
added to the list.

10: LIST_ERROR: A index into the point list has been passed to the driver that does not
exist.

11: INVALID_CONV: The number of conversions or scans passed to the driver are < 1.

12: INVALID_BUFFER: The buffer passed was not large enough to hold all data in the
driver’s internal buffer.

13: POINT_UNINSTALL: A point was not set up with AD128_SetPointConfig().

14: ACTIVE_PROCESS: A request was made to start a batch process when one was already
active.

15: BUFFER_EMPTY: A post processing request was made when the driver’s internal data
buffer was empty.

16: INVALID_PTR: A pointer passed to the driver for returning data was not a valid
pointer.

17: GAIN_ERROR: A gain code passed to the driver was not between zero and eight.

18: UNIT_ERROR: A temperature unit code passed to the driver was not 0 for oF or 1
for oC.

19: CURVE_ERROR: A curve passed to the driver was not T,b,e,j,k,r,s,t,a or u.

20: CHANNEL_ERROR: Reference channel was < 0 or > 8.

21: RESERVED: Reserved for future use.

22: FILE_ERROR: An error occurred opening or reading the configuration file.

23: CONFIG_ERROR: A configuration error occurred attempting to configure the driver
with the configuration file. There is probably an error in the
contents of the file.

24: INVALID_COUNTER:The counter number passed to the driver was not between zero and
two.

25: FREQ_ERROR: A requested frequency for the rate generator function was out of
range.

26: INVALID_MODE: A counter mode passed to the driver was not 0,1,2,3,4,5.

27: TIMEOUT: Card did not respond to a start conversion.

99: WINDOWSERROR: An error occurred generated by Windows, this is probably a
memory error that the driver is not capable of dealing with. Try
running Windows in standard mode or adding more memory. The
drivers memory requirements increase based on the number of
points in the point list and the number of AD12-8 cards you are
configuring with the driver.

Chapter 7: Converter Applications

Manual Number: 00650-014-4 Page 7-1

Chapter 7: A/D Converter Applications

Connecting Analog Inputs

The AD12-8 provides eight channels of single-ended input. Single-ended configuration means that
you have only one input relative to ground. A differential input provides two inputs and the signal
corresponds to the voltage difference between these two inputs. The single-ended configuration is
suitable only for “floating” sources; i.e., a signal source that does not have any connection to
ground at the source. To use differential connections to the AD12-8, the AT16-P multiplexer card
must be added. The AT16-P supplies 16 channels of differential input.

Thus, if the signal source has one side connected to a local ground, the AD12-8/AT16-P combina-
tions should be used. A differential input responds only to difference signals between the high and
low inputs. In practice, the signal source ground will not be at exactly the same voltage as the
computer ground where the AD12-8/AT16-P combination is because the two grounds are con-
nected through ground returns of the equipment and the building wiring. The difference between
the ground voltages forms a common mode voltage (i.e., a voltage common to both inputs) that a
differential input rejects up to a certain limit. In the case of the AD12-8/AT16-P combination, the
common mode limit is ±10V.

It’s important to understand the difference between input types, how to use them effectively, and
how to avoid ground loops. Misuse of inputs is the most common difficulty that users experience
in applying and obtaining the best performance from data acquisition systems.

Comments on Noise Interference

Noise is generally introduced into analog measurements from two sources: (a) ground loops and
(b) external noise. In both cases, use of good wiring practice will reduce and sometimes eliminate
the noise. A key point with regard to ground or return wiring is that in an analog/digital “system”,
digital circuits should have a separate ground system from analog circuits with only a single com-
mon point. The reason for separate ground busses is that digital circuits, by their very nature,
generate considerable high frequency noise as they rapidly change state.

Ground loops occur when AC noise and DC offset are added in series with a grounded signal
source if the source ground is at a different potential than the A/D’s analog ground. If there is an
ohmic resistance between the source ground and the A/D’s ground, the resultant current flow causes
a voltage to be developed and a “ground loop” exists. If the signal is measured in a single-ended
mode, that voltage is added to the source signal thereby creating an error. The best way to avoid
ground loop errors is to use good wiring practice as described above. If this is not possible, use of
a differential measurement mode will minimize errors.

Manual Number: 00650-014-4Page 7-2

AD12-8 Manual

Input Range and Resolution Specifications

Resolution of an A/D converter is usually specified in number of bits; i.e. 8 bits, 12 bits, etc. Input
range is specified in volts; i.e. 0-5V, ±10V, ±20mV, etc. To determine the voltage resolution of an
A/D converter, simply divide the full scale voltage range by the number of parts of resolution. For
example, for a unipolar range of 0-10V, a 12-bit A/D resolves the input into 4096 parts. Thus,
voltage resolution (the “weight” of one bit) is 2.44mV.

If an amplifier is incorporated in the circuit providing gain, then divide the voltage resolution by
the gain of the amplifier, then divide by 4096. For example, a 12-bit A/D with ±5V full-scale input
range and an amplifier gain of 100 will provide an overall input resolution of about 24.4mV.

Current Measurements

Current signals can be converted to voltage for measurement by the A/D converter by addition of a
shunt resistor installed across the input terminals. For example, to accommodate 4-20mA current
transmitter inputs, connect a 250W shunt resistor across the A/D input terminals. The resultant
1-5V signal can then be measured. The UTB screw terminal accessory board, for example, in-
cludes a breadboard area with plated through holes that allow insertion of shunt resistors. If an
AT16I-P multiplexer expansion card is being used, pre-wired pads are provided on the AT16I-P. If
all the inputs are 4-20mA range current inputs from current transmitters, then there is a configura-
tion of the multiplexer expansion board called AT16I-P. That model includes the shunt resistors
and has offset and gain set such that the “live zero” is compensated for and the full 12-bit resolution
of the A/D is realized.

Note: Accuracy of measurement will be directly affected by the accuracy of these resistors. Ac-
cordingly, precision resistors should be used. Also, if the ambient temperature will vary significantly,
these precision resistors should be low temperature coefficient wire-wound resistors.

Measuring Large Voltages

Voltages larger than the input range of the A/D can be measured by using a voltage divider. As
above, it is necessary to use precision resistors. Also if the raw voltage is a direct analog of a
parameter being measured, then it will be necessary to apply a scale factor in software in order to
arrive at the correct engineering units.

Adding More Analog Inputs

You can add sub-multiplexers to any or all of the analog inputs of AD12-8. The AT16-P provides
capability for 16 channels per input plus a common instrumentation amplifier. Up to eight AT16-
P’s can be added to one AD12-8 providing a total input capability up to 128 channels.

Chapter 7: Converter Applications

Manual Number: 00650-014-4 Page 7-3

Precautions - Noise, Ground Loops, and Overloads

Unavoidably, data acquisition applications involve connecting external things to the computer.
DO NOT get inputs mixed up with the AC line. An inadvertent short can instantly cause extensive
damage. Industrial Computer Source cannot accept liability for this kind of accident. As an aid to
avoid this problem:

a. Avoid direct connection to the AC line.

b. Make sure that all connections are secure so that signal wires are not likely to come loose and
short to high voltages.

c. Use isolation amplifiers and transformers where necessary. There are two types of ground
connections on the rear connector of AD12-8. These are called Power Ground and Low Level
Ground. Power ground is the noisy or dirty ground that is meant to carry all digital signals and
heavy (power supply) currents. Low Level Ground is the signal ground for all analog input
functions. It is only meant to carry signal currents (less than a few milliamperes) and is the
ground reference for the A/D converter. Due to connector contact resistance and cable resistance
there may be many millivolts difference between the two grounds even though they are connected
together and to the computer and power line grounds on the AD12-8 card.

Manual Number: 00650-014-4Page 7-4

AD12-8 Manual

This page intentionally left blank

Chapter 8: Programmable Interval Timer

Manual Number: 00650-014-4 Page 8-1

Chapter 8: Programmable Interval Timer

The AD12-8 contains a type 8253 programmable counter/timer which allows you to implement
such functions as a Real-Time Clock, Event Counter, Digital One-Shot, Programmable Rate Gener-
ator, Square-Wave Generator, Binary Rate Multiplier, Complex Wave Generator, and/or a Motor
Controller. The 8253 is a flexible but powerful device that consists of three independent, 16-bit,
presettable, down counters. Each counter can be programmed to any count as low as 1 or 2, and up
to 65,535 in binary format, depending on the mode chosen.

On the AD12-8 these three counters are designated Counter #0, Counter #1, and Counter #2. Counter
#0 is un-dedicated, with the gate, output and clock connections fully accessible via the I/O connec-
tor. Counter #1 receives clock inputs from a 1/32 multiple of the high speed computer color oscil-
lator clock (14.31818 MHz). The output of counter #1 is used as the clock for counter #2, thus
counters #1 and #2 are cascaded together to form a 32-bit counter. The output of counter #2 is also
available at the I/O connector, pin 23. If the CLK0 jumper is installed, the output of counter #1 can
be used as an alternate input clock for counter #0. Outputs of counter #2 are used to initiate A/D
conversions if the TMR/EXT jumper is in the TMR position.

Operational Modes

The 8253 modes of operation are described in the following paragraphs to familiarize you with the
versatility and power of this device. For those interested in more detailed information, a full
description of the 8253 programmable interval timer can be found in the Intel (or equivalent manu-
facturers) data sheets. The following conventions apply for use in describing operation of the
8253:

Clock: A positive pulse into the counter’s clock input.

Trigger: A rising edge input to the counter’s gate input.

Counter Loading: Programming of a binary count into the counter.

Mode 0: Pulse on Terminal Count

After the counter is loaded, the output is set low and will remain low until the counter decrements
to zero. The output then goes high and remains high until a new count is loaded into the counter. A
trigger enables the counter to start decrementing. This mode is commonly used for event counting
with Counter #0.

Mode 1: Retriggerable One-Shot

The output goes low on the clock pulse following a trigger to begin the one-shot pulse and goes
high when the counter reaches zero. Additional triggers result in reloading the count and starting
the cycle over. If a trigger occurs before the counter decrements to zero, a new count is loaded.
Thus, this forms a re-triggerable one-shot. In mode 1, a low output pulse is provided with a period
equal to the counter count-down time.

Manual Number: 00650-014-4Page 8-2

AD12-8 Manual

Mode 2: Rate Generator

This mode provides a divide-by-N capability where N is the count loaded into the counter. When
triggered, the counter output goes low for one clock period after N counts, reloads the initial count,
and the cycle starts over. This mode is periodic, the same sequence is repeated indefinitely until
the gate input is brought low. This mode is used on the AD12-8 card in counters 1 and 2 to generate
periodic A/D start commands. This mode also works well as an alternative to mode 0 for event
counting.

Mode 3: Square Wave Generator

This mode operates periodically like mode 2. The output is high for half of the count and low for
the other half. If the count is even, then the output is a symmetrical square wave. If the count is
odd, then the output is high for (N+1)/2 counts and low for (N-1)/2 counts. Periodic triggering or
frequency synthesis are two possible applications for this mode. Note that in this mode, to achieve
the square wave, the counter decrements by two for the total loaded count, then reloads and decre-
ments by two for the second part of the wave form.

Mode 4: Software Triggered Strobe

This mode sets the output high and, when the count is loaded, the counter begins to count down.
When the counter reaches zero, the output will go low for one input period. The counter must be
reloaded to repeat the cycle. A low gate input will inhibit the counter. This mode can be used to
provide a delayed software trigger for initiating A/D conversions.

Mode 5: Hardware Triggered Strobe

In this mode, the counter will start counting after the rising edge of the trigger input and will go low
for one clock period when the terminal count is reached. The counter is retriggerable. The output
will not go low until the full count after the rising edge of the trigger.

Programming

On the AD12-8, the 8253 counters occupy the following addresses:

BASE ADDRESS + 4: Read/Write Counter #0

BASE ADDRESS + 5: Read/Write Counter #1

BASE ADDRESS + 6: Read/Write Counter #2

BASE ADDRESS + 7: Write to Counter Control register

The counters are programmed by writing a control byte into a counter control register at BASE
ADDRESS + 7. The control byte specifies the counter to be programmed, the counter mode, the
type of read/write operation, and the modulus. The control byte format is as follows:

B7 B6 B5 B4 B3 B2 B1 B0

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

Chapter 8: Programmable Interval Timer

Manual Number: 00650-014-4 Page 8-3

SC0-SC1: These bits select the counter that the control byte is destined for.

SC1 SC0 Function

0 0 Program Counter 0

0 1 Program Counter 1

1 0 Program Counter 2

1 1 Read Back Command

RW0-RW1:These bits select the read/write mode of the selected counter.

RW1 RW0 Counter Read/Write Function

0 0 Counter Latch Command

0 1 Read/Write LS Byte

1 0 Read/Write MS Byte

1 1 Read/Write LS Byte, then MS Byte

M0-M2: These bits set the operational mode of the selected counter.

MODE M2 M1 M0

0 0 0 0

1 0 0 1

2 X 1 0

3 X 1 1

4 1 0 0

5 1 0 1

BCD: Set the selected counter to count in binary (BCD bit = 0) or BCD (BCD bit = 1).

Manual Number: 00650-014-4Page 8-4

AD12-8 Manual

Reading and Loading the Counters

If you attempt to read an active counter, you will most likely get erroneous data. This is partly
caused by carries rippling through the counter during the read operation. Also, the low and high
bytes are read sequentially rather than simultaneously and, thus, it is possible that carries will be
propagated from the low to the high byte during the read cycle. To circumvent these problems, you
should perform a counter-latch operation in advance of the read cycle. To do this, load the RW1
and RW2 bits with zeroes. This instantly latches the count of the selected counter(selected via the
SC1 and SC0 bits) in a 16-bit hold register. A subsequent read operation on the selected counter
returns the held value. Latching is the best way to read an active counter without disturbing the
counting process. You can only rely on directly read counter data if the counting process is sus-
pended while reading, by bringing the gate low, or by halting the input pulses.

For each counter you must specify in advance the type of read or write operation that you intend to
perform. You have a choice of loading/reading (a) the high byte of the count, or (b) the low byte of
the count, or (c) the low byte followed by the high byte.

Programming Examples

Using Counter #0 as a Pulse Counter

Note that the counters are “down” counters so, when resetting them, it’s better to load them with a
full count value of 65,535 rather than zero.

outportb(BASEADDRESS + 7,0x30); /* counter 0, mode 0 */

outportb(BASEADDRESS + 4,0xff); /* counter 0 low load byte */

outportb(BASEADDRESS + 4,0xff); /* counter 0 high load byte */

Reading Counter #0

outportb(BASEADDRESS + 7,0x30); /* counter 0, latch command */

/* read in both bytes of the latched value and combine into an integer */

value = inportb(BASEADDRESS + 4) + (inportb(BASEADDRESS + 4) * 256;

Programming Examples Using the A12DRV Driver

In practice, TASKS 14 and 15 of the A12DRV driver can be used to perform equivalent operations
to the above examples with fewer programming steps.

For counting pulses, the counter configuration is not of great importance because you will only be
using the countdown capabilities of the counter. Mode 2 is as good as any other choice for pulse
counting. As in the previous example, load Counter #0 with a full scale count of 65,535 (hex
FFFF) using TASK 14 of the driver. While loading the counter, counting can be inhibited by
holding the gate input, pin 21, low.

Chapter 8: Programmable Interval Timer

Manual Number: 00650-014-4 Page 8-5

task = 14; /* counter setup mode task */

params[0] = 0; /* setup counter #0 */

params[1] = 2; /* set counter #0 mode to 2 */

params[2] = 0xffff; /* set counter #0 count to ffff hex (65535) */

a12drv(FP_OFF(task),FP_OFF(params),FP_OFF(status)); /* call the driver */

Next, apply the number of pulses to be counted. The gate input, pin 21, must now be high or can be
taken high for some fixed time interval to control the number of pulses counted. You can read the
new count using TASK 15 of the driver:

task = 15; /* read counter count task */

params[0] = 0; /* read counter #0 */

a12drv(FP_OFF(task),FP_OFF(params),FP_OFF(status)); /* call the driver */

Upon return, params[1] contains the counter contents.

Triggering A/D Conversions Periodically

When you are using the A/D converter on AD12-8, one of the key uses for the programmable
interval timer is to provide start pulses for periodic sampling. The TMR/EXT jumper should be in
the TMR position. You can set up an output frequency by using Task 14 to load Counters #1 and #2
with the required divisors.

For example, assume that a trigger rate of 8.3 KHz is needed. First, work out the overall division
ratio from the color oscillator clock, which is divided by 32 before being applied to counter #1’s
clock input.

14,318,180 / 32 = 447,443 counter #1’s clock frequency

447,443 / 8300 = 53.9 desired counts

The closest frequency obtainable would be :

447,443 / 54 = 8.286KHz closest frequency

Now, divide the 54 between the two counters (6 * 9 = 54):

task = 14; /* counter setup mode task */

params[0] = 1; /* setup counter #1 */

params[1] = 2; /* set counter #1 mode to 2 */

params[2] = 6; /* set counter #1 count to 6 */

a12drv(FP_OFF(task),FP_OFF(params),FP_OFF(status)); /* call the driver */

task = 14; /* counter setup mode task */

params[0] = 0; /* setup counter #2 */

params[1] = 2; /* set counter #2 mode to 2 */

params[2] = 9; /* set counter #2 count to 9 */

a12drv(FP_OFF(task),FP_OFF(params),FP_OFF(status)); /* call the driver */

Manual Number: 00650-014-4Page 8-6

AD12-8 Manual

Generating Square Waves of Programmed Frequency

Frequency of output is a direct function of the frequency of the clock input and of the count loaded
into the counter. The minimum count (or divisor) is 2 and the maximum is 65535.

Calculating what divisor to use for a specific output frequency is straightforward. If, for example,
you desire a 1KHz output and your clock is 5MHz, divide by 1000 and find that the count to be
loaded into counter #0 should by 5000.

Measuring Frequency and Period

The two previous sections show how to count pulses and generate output frequencies. It is also
possible to measure frequency by raising the gate input of Counter #0 for a known time interval and
counting the number of clock pulses accumulated for that interval. The gating signal can be de-
rived from Counters #1 and #2 operating in a square wave mode.

Counter #0 can also be used to measure pulse width or half period of a periodic signal. The signal
should be applied to the gate input of Counter #0 and a known frequency applied to the Counter #0
clock input. During the interval when the gate input is low, Counter #0 is loaded with a full count
of 65,535. When the gate input goes high, the counter begins decrementing until the gate input
goes back low at the end of the pulse. The counter is then read and the change in counts is a linear
function of the duration of the gate input signal. If Counter #0 receives 10 microsecond duration
clock pulses (100 KHz), the maximum pulse duration that can be measured is 65,535*10-5 = 655
milliseconds.

Generating Time Delays

There are four methods of using Counter #0 to generate programmable time delays.

Pulse on Terminal Count

After loading, the counter output goes low. Counting is enabled when the gate goes high. The
counter output will remain low until the count reaches zero, at which time the counter output goes
high. The output will remain high until the counter is reloaded by a programmed command. If the
gate goes low during countdown, counting will be disabled as long as the gate input is low.

Programmable One-Shot

The counter need only be loaded once. The time delay is initiated when the gate input goes high.
At this point the counter output goes low. If the gate input goes low, counting continues but a new
cycle will be initiated if the gate input goes high again before the timeout delay has expired; i.e., is
re-triggerable. At the end of the timeout, the counter reaches zero and the counter output goes high.
That output will remain high until re-triggered by the gate input.

Software Triggered Strobe

This is similar to Pulse-on-Terminal-Count except that, after loading, the output goes high and
only goes low for one clock period upon timeout. Thus, a negative strobe pulse is generated a
programmed duration after the counter is loaded.

Chapter 8: Programmable Interval Timer

Manual Number: 00650-014-4 Page 8-7

Hardware Triggered Strobe

This is similar to Programmable-One-Shot except that when the counter is triggered by the gate
going high, the counter output immediately goes high, then goes low for one clock period at
timeout, producing a negative-going strobe pulse. The timeout is re-triggerable; i.e., a new cycle
will commence if the gate goes high before a current cycle has timed out.

Manual Number: 00650-014-4Page 8-8

AD12-8 Manual

This page intentionally left blank

Appendix A: Linearization

Manual Number: 00650-014-4 Page A-1

Appendix A: Linearization

A common requirement encountered in data acquisition is to linearize the output of non-linear
transducers such as thermocouples, RTD’s, etc. The starting point for any linearizing algorithm is
knowledge of the calibration curve (input/output behavior) of the sensor. This may be derived
experimentally, or may be available in manufacturer’s data, or in standard tables.

There are several approaches to linearization. The two most common are (a) piecewise lineariza-
tion using look-up tables and (b) use of a mathematical function to approximate the non-linearity.
Amongst the mathematical methods, polynomial expansion is one of the easiest to implement.
The utility program, POLY.EXE, allows you to generate up to a 10th order polynomial approxima-
tion. For most practical applications, a fifth-order polynomial approximation is usually adequate.

Before you start the program have the input/output data or calibration data handy. This will be in
the form of x and f(x) values where x is the input to your system and f(x) is the resulting output. To
run the program, type POLY and ENTER at the command line. The program will then prompt you
for the desired order of the polynomial, then the number of pairs that you wish to use to generate
the polynomial. You then enter the data pairs and the polynomial is computed and displayed.

For example, given the following data points, let’s generate a 5th order polynomial to approximate
this function:

x 0 1 2 3 4 5 6 7 8 9 10

f(X) 3 2 3 5 3 4 3 2 2 3 2

The order of the polynomial that you desire will be 5 and the number of data points that you enter
will be 11. After the data points are entered, the program gives the following output:

For the polynomial f(x) = C(0) + C(1)x1 + C(2)x2 + C(3)x3 + C(4)x4 + C(5)x5, the coefficients will
be:

COEFFICIENT (5) : -0.003151

COEFFICIENT (4) : 0.081942

COEFFICIENT (3) : -0.740668

COEFFICIENT (2) : 2.635998

COEFFICIENT (1) : -2.816607

COEFFICIENT (0) : 2.956044

QUALITY OF SOLUTION (sum of the errors squared): 2.797989

The goal is to make the quality as close to 0 as possible. The program checks the resulting polyno-
mial with the data pairs that you entered. It computes the f(x) values for each x value entered using
the polynomial, subtracts the result from the supplied value of f(x), and then squares the result.
The squared results are then summed to compute the QUALITY. If the computed f(x) values were
exact, this value would be 0. But, since this is an approximation, this value will usually be some-
thing greater than 0.

Manual Number: 00650-014-4Page A-2

AD12-8 Manual

The QUALITY can be used to indicate how good a particular solution is. If the range of points is
very wide or if the points make transition from negative to positive values, then QUALITY will
suffer. For these cases, it may be better to use multiple polynomials rather than just one. For
example, the following data are taken from the NIST tables for type T thermocouples:

x -6.258 -5.603 -4.468 -3.378 -1.182 0 2.035

f(x) -270 -200 -150 -100 -50 0 50

4.277 6.702 9.286 12.01 14.86 17.82 20.87

100 150 200 250 300 350 400

If we take all the data and compute one 5th order polynomial, the QUALITY is 473.543732; not
very good. Now divide the data into two polynomials; one on the negative side including 0 and one
on the positive side also using 0. The results will show a QUALITY of 90.732620 for the negative
side and a QUALITY of 0.005131 for the positive side. Thus, by using two polynomials, you have
made the positive side very accurate and dramatically improved the negative side.

Accuracy of the negative side can be further improved by adding points. For example, add the
following pairs to the negative side of the polynomial for a type T thermocouple:

x -6.181 -5.167 -4.051 -2.633

f(x) -250 -175 -125 -75

If you run the new data, the QUALITY is improved to 69.555611, but still perhaps not as good as
you would like.

Thus, you may use the QUALITY as a means to determine how good the polynomial is. You can
experiment with both order and number of data points until you are satisfied with the solution.
Incidentally, this example also shows that the smaller the range of x values, the better the solution.

The computational method used is a least squares solution using Gauss Elimination with partial
pivoting to improve accuracy.

Appendix B: Cabling and Connector Information

Manual Number: 00650-014-4 Page B-1

Appendix B: Cabling and Connector Information

PIN NAME FUNCTION

1 +12VDC +12VDC Power from the Computer Bus

2 CTR0 CLK Counter 0 Clock

3 GN0 LSB Digital Output, gain control for AT16-P

4 USER Digital Output, User

5 GN1 Bit 1 Digital Output, gain control for AT16-P

6 GN2 MSB Digital Output, gain control for AT16-P

7 OP0 LSB Digital Output, sub-multiplexer channel select

8 OP1 Bit 1 Digital Output, sub-multiplexer channel select

9 OP2 Bit 2 Digital Output, sub-multiplexer channel select

10 OP3 MSB Digital Output, sub-multiplexer channel select

11 PWR GND Power (Digital) ground

12 DIO7 Digital Output, Bit 7, jumper selected as input or output

13 DIO6 Digital Output, Bit 6, jumper selected as input or output

14 DIO5 Digital Output, Bit 5, jumper selected as input or output

15 DIO4 Digital Output, Bit 4, jumper selected as input or output

16 DIO3 Digital Output, Bit 3, jumper selected as input or output

17 CTR0 OUT Counter 0 Output

18 L.L. GND Low Level (Analog) Ground

19 VREF +10.0VDC (220mA) A/D reference output

20 -12VDC -12VDC Power from the Computer Bus

21 CTR0 GATE Counter 0 Gate

22 CTR1 GATE Counter 1 Gate

23 CTR1 OUT Counter 1 Output

24 INT Interrupt input, positive edge trigger

25 DIO0 Digital Output, Bit 0, jumper selected as input or output

26 DIO1 Digital Output, Bit 1, jumper selected as input or output

27 DIO2 Digital Output, Bit 2, jumper selected as input or output

28 REF GND A/D Reference Return

29 +5VDC +5VDC Power from the Computer Bus

30 CH7 IN Chl 7 Analog Input

31 CH6 IN Chl 6 Analog Input

32 CH5 IN Chl 5 Analog Input

33 CH4 IN Chl 4 Analog Input

34 CH3 IN Chl 3 Analog Input

35 CH2 IN Chl 2 Analog Input

36 CH1 IN Chl 1 Analog Input

37 CH0 IN Chl 0 Analog Input

AD12-8 Output Connector Pin Assignments

Connections are made to the AD12-8 card via a 37-pin D type connector that extends through the
back of the computer case. The female mating connector can be a Cannon #DC-37S for soldered
connections or insulation displacement flat cable types such as AMP #745242-1 may be used. The
wiring may be directly from the signal sources or may be on ribbon cable from screw terminal
accessories such as The UTB. The pin assignments are as follows:

Manual Number: 00650-014-4Page B-2

AD12-8 Manual

This page intentionally left blank

Appendix C: Basic Integer Variable Storage

Manual Number: 00650-014-4 Page C-1

Appendix C: Basic Integer Variable Storage

Data are stored in integer variables (% type) in binary form. Each integer variable uses 16 bits or
two bytes of memory. Sixteen bits of binary data is equivalent to 0 to 65,535 decimal. Numbers
are represented as follows:

Number
High Byte Low Byte

B7 B6 B5 B4 B 3 B2 B 1 B0 B7 B6 B5 B4 B3 B 2 B 1 B0

+32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

+10000 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0

+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-10000 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0

-32768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Integer variables are the most compact form of storage for the 12-bit data from the A/D converter
and the 16-bit data from the interval timer. Therefore, to conserve memory and disk space and to
optimize execution time, all data exchange via the CALL is through integer type variables.

This poses a programming problem when handling unsigned numbers in the range 32,768 to 65,535.
If you wish to input or output an unsigned integer greater than 32,767, then it is necessary to work
out what its 2’s complement signed equivalent is. For example, if 50,000 decimal is to be loaded
into a 16-bit counter, an easy way to convert this to binary is to enter BASIC and execute PRINT
HEX$(50000). This returns C350 which, in binary form is 1100 0011 0101 0000. Since the most
significant bit is a one, this would be stored as a negative integer and, in fact, the correct integer
variable value would be 50,000 - 65,536 = -15,536.

Thus, the programming steps to switch between integer and real variables for representation of
unsigned numbers between 0 and 65,535 is:

-From real variable N (where 0 <= N <= 65,535) to integer variable N%:

xxx10 IF N<=32767 THEN N% = N ELSE N% = N-65536

-From integer variable N% to real variable N:

xxx20 IF N% >= 0 THEN N=N% ELSE N = N%+65536

Manual Number: 00650-014-4Page C-2

AD12-8 Manual

This page intentionally left blank

Declaration of Conformity

6260 Sequence Drive
San Diego, CA 92121-4371

(800) 523-2320

Industrial Computer Source declares under its own and full responsibility that the following products are
compliant with the protection requirements of the 89/336/EEC and 73/23/EEC directives.

, amended by 92/31/EEC and 93/88/EEC

Only specific models listed on this declaration and labeled with the CE logo are CE compliant.

AD12-8

Conformity is accomplished by meeting the requirements of the following European harmonized stan-
dards:

EN 50081-1:1992 Emissions, Generic Requirements.
-EN 55022 Measurement of radio interference characteristics of information technology equipment.

EN 50082-1:1992 Immunity, Generic Requirements.
-IEC 801-2:1984 Immunity for AC lines, transients, common, and differential mode.
-IEC 801-3:1984 Immunity for radiated electromagnetic fields.
-IEC 801-4:1988 Immunity for AC and I/O lines, fast transient common mode.

EN 60950:1992 Safety of Information Technology Equipment.

Information supporting this declaration is contained in the applicable Technical Construction file
available from:

Z.A. de Courtaboeuf
16, Avenue du Québec

B.P. 712
91961 LES ULIS Cedex

August 28, 1997
Mr. Steven R. Peltier San Diego, CA
President & Chief Executive Officer

BUG REPORT

While we have tried to assure this manual is error free, it is a fact of life that works of man have
errors. We request you to detail any errors you find on this BUG REPORT and return it to us.
We will correct the errors/problems and send you a new manual as soon as available. Please
return to:

Attn: Documentation Department
P. O. Box 910557

San Diego, CA 92121-0557

Your Name: ___

Company Name: ___

Address 1: __

Address 2: __

Mail Stop: _______________________________

City: _______________________________________ State: _______ Zip: ____________

Phone: (_____) _______________

Product: AD12-8

Manual Revision: 00650-014-4B

Please list the page numbers and errors found. Thank you!

	Table of Contents
	FOREWARD
	Guarantee
	Limited Warranty
	Return Procedure
	Limitation of Liability
	Advisories
	Chapter 1: Functional Description
	Analog Inputs
	Input System Expansion
	Discrete Digital I/O
	Reference Voltage Output
	Counter/Timer
	Interrupts
	Utility Software
	Enhancements
	Specifications
	Analog Inputs 1-5
	Reference Voltage Output
	Digital I/O
	Interrupt Channel
	Programmable Timer
	Environmental
	How to remain CE Compliant
	Chapter 2: Software
	Software Provided
	Backing up the Master Diskettes
	Hard Disk Installation
	Configuration File
	Base Address
	Mux Extensions
	Voltage Range
	Bipolar/Unipolar Mode
	IRQ Level
	Example
	VisualBasic Utility Driver
	Chapter 3: Hardware Configuation and Installation
	Option Selection
	Analog Input Ranges
	Counter/Timer
	A/D Conversion Start
	Interrupts
	Digital I/O
	Selecting and Setting the Base Address
	Selecting a Base Address
	Using the Setup Program to Set the Base Address
	Installing the AD12-8 Card
	Calibration and Test
	Calibration Procedure
	Chapter 4: Programming the AD12-8
	AD12-8 Register Address Map
	Register Definitions
	Control Registers
	Status Register
	A/D Registers
	Digital I/O
	Counter/Timer Registers
	Programming Using the Drivers
	Using the Driver with Turbo or Borland C
	Using the Driver with Microsoft C
	Using the Driver with Turbo Pascal
	Using the Driver with QuickBASIC
	Using the Driver with BASIC
	Chapter 5: AD12-8 Driver Reference
	Using the Driver
	The Point List Concept
	Other Software Features
	Task Summary
	Task Reference
	Task 0: Initialize
	Task 1: Check A/D Operations
	Task 2: Fetch Gain Code for a Point Address
	Task 3: Fetch Point Address for a Point List Index
	Task 4: Assign Gain Code to Range of Point Addresses
	Task 5: Assign Point Addresses to the Point List
	Task 6: Fetch Data from a Point Address
	Task 7: Fetch Data from Next Point Address in List
	Task 8: Fetch Multiple Buffered Conversions
	Task 9: Interrupt Driven Data Acquisition
	Task 10: Thermocouple/Function Assignment
	Task 11: Reset Functions
	Task 12: Digital Output
	Task 13: Digital Input
	Task 14: Counter/Timer Setup
	Task 15: Read Counter/Timer Count
	Task 16: High Speed Conversions, Single Point Address
	Task 17: High Speed Conversions, Multiple Point Addresses
	Summary of Error Codes
	Chapter 6: AD12-8 Windows Driver Reference
	Driver Features
	Using the Driver
	Task Summary
	Task Reference
	AD128_Init
	AD128_Shutdown
	AD128_SetPointConfig
	AD128_FetchPointConfig
	AD128_AddPoints
	AD128_ResetListIndex
	AD128_ClearPointList
	AD128_DelPtListIndexes
	AD128_SetSettleTime
	AD128_GetNextPoint
	AD128_GetIndexPoint
	AD128_GetDirectPoint
	AD128_IRQTerminate
	AD128_IRQStatus
	AD128_IRQScan
	AD128_PollScan
	AD128_PostProcess
	AD128_FetchLastGain
	AD128_DigitalOut
	AD128_DigitalIn
	AD128_SetCounter
	AD128_ReadCounter
	AD128_RateGenerator
	AD128_DisableCounter
	AD128_MeasureFreq
	AD128_MeasurePeriod
	Summary of Error Codes
	Chapter 7: A/D Converter Applications
	Connecting Analog Inputs
	Comments on Noise Interference
	Input Range and Resolution Specifications
	Current Measurements
	Measuring Large Voltages
	Adding More Analog Inputs
	Precautions - Noise, Ground Loops, and Overloads
	Chapter 8: Programmable Interval Timer
	Operational Modes
	Mode 0: Pulse on Terminal Count
	Mode 1: Retriggerable One-Shot
	Mode 2: Rate Generator
	Mode 3: Square Wave Generator
	Mode 4: Software Triggered Strobe 8-2
	Mode 5: Hardware Triggered Strobe
	Programming
	Reading and Loading the Counters
	Programming Examples
	Using Counter #0 as a Pulse Counter
	Reading Counter #0
	Programming Examples Using the A12DRV Driver
	Triggering A/D Conversions Periodically
	Generating Square Waves of Programmed Frequency
	Measuring Frequency and Period
	Generating Time Delays
	Pulse on Terminal Count
	Programmable One-Shot
	Software Triggered Strobe
	Hardware Triggered Strobe
	Appendix A: Linearization
	Appendix B: Cabling and Connector Information
	AD12-8 Output Connector Pin Assignments
	Appendix C: Basic Integer Variable Storage

