
Model AIO8-P
Product Manual

MANUAL NUMBER : 00650-013-13B

6260 SEQUENCE DRIVE, SAN DIEGO, CA 92121-4371 (619) 677-0877 (FAX) 619-677-0895
INDUSTRIAL COMPUTER SOURCE EUROPE TEL (1) 69.18.74.40 FAX (1) 64.46.40.42 • INDUSTRIAL COMPUTER SOURCE (UK) LTD TEL 01243-533900 FAX 01243-532949

http:/www.indcompsrc.com

Page - ii

Page - iii

FOREWARD

This product manual provides information to install, operate and or program the referenced product(s)
manufactured or distributed by Industrial Computer Source. The following pages contain information
regarding the warranty and repair policies.

Technical assistance is available at: 1-800-480-0044.

Manual Errors, Omissions and Bugs: A "Bug Sheet" is included as the last page of this manual. Please
use the "Bug Sheet" if you experience any problems with the manual that requires correction.

NOTE

The information in this document is provided for reference only. Industrial Computer Source does not
assume any liability arising out of the application or use of the information or products described herein.
This document may contain or reference information and products protected by copyrights or patents and
does not convey any license under the patent rights of Industrial Computer Source, nor the rights of others.

Copyright © 1995 by Industrial Computer Source, a California Corporation, 6260 Sequence Drive, San
Diego, CA 92121-4371. Industrial Computer Source is a Registered Trademark of Industrial Computer
Source. All trademarks and registered trademarks are the property of their respective owners. All rights
reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording , or otherwise, without the prior written permission of the publisher.

Page - iv

This page intentionally left blank

Page - v

Guarantee

A thirty day money-back guarantee is provided on all standard products sold. Special order products are
covered by our Limited Warranty, however they may not be returned for refund or credit. EPROMs, RAM,
Flash EPROMs or other forms of solid electronic media are not returnable for credit - but for replacement
only. Extended Warranty available. Consult factory.

Refunds
In order to receive refund on a product purchase price, the product must not have been damaged by
the customer or by the common carrier chosen by the customer to return the goods, and the product
must be returned complete (meaning all manuals, software, cables, etc.) within 30 days of receipt
and in as-new and resalable condition. The Return Procedure must be followed to assure prompt
refund.

Restocking Charges
Product returned after 30 days, and before 90 days, of the purchase will be subject to a minimum
20% restocking charge and any charges for damaged or missing parts.

Products not returned within 90 days of purchase, or products which are not in as-new and re-
saleable condition, are not eligible for credit return and will be returned to the customer.

Limited Warranty

One year limited warranty on all products sold with the exception of the “Performance Series” I/O products,
which are warranted to the original purchaser, for as long as they own the product, subject to all other
conditions below, including those regarding neglect, misuse and acts of God. Within one year of purchase,
Industrial Computer Source will repair or replace, at our option, any defective product. At any time after one
year, we will repair or replace, at our option, any defective “Performance Series” I/O product sold. This does
not include products damaged in shipment, or damaged through customer neglect or misuse. Industrial
Computer Source will service the warranty for all standard catalog products for the first year from the date
of shipment. After the first year, for products not manufactured by Industrial Computer Source, the remain-
der of the manufacturer's warranty, if any, will be serviced by the manufacturer directly.

The Return Procedure must be followed to assure repair or replacement. Industrial Computer
Source will normally return your replacement or repaired item via UPS Blue. Overnight delivery
or delivery via other carriers is available at additional charge.

The limited warranty is void if the product has been subjected to alteration, neglect, misuse, or
abuse; if any repairs have been attempted by anyone other than Industrial Computer Source or its
authorized agent; or if the failure is caused by accident, acts of God, or other causes beyond the
control of Industrial Computer Source or the manufacturer. Neglect, misuse, and abuse shall
include any installation, operation, or maintenance of the product other than in accordance with
the owners’ manual.

No agent, dealer, distributor, service company, or other party is authorized to change, modify, or
extend the terms of this Limited Warranty in any manner whatsoever. Industrial Computer Source
reserves the right to make changes or improvements in any product without incurring any obligation
to similarly alter products previously purchased.

Shipments not in compliance with this Guarantee and
Limited Warranty Return Policy will not be accepted
by Industrial Computer Source.

®

Page - vi

Return Procedure

For any Limited Warranty or Guarantee return, please contact Industrial Computer Source's Customer Ser-
vice at 1-800-480-0044 and obtain a Return Material Authorization (RMA) Number. All product(s) re-
turned to Industrial Computer Source for service or credit must be accompanied by a Return Material
Authorization (RMA) Number. Freight on all returned items must be prepaid by the customer who is
responsible for any loss or damage caused by common carrier in transit. Returns for Warranty must include
a Failure Report for each unit, by serial number(s), as well as a copy of the original invoice showing date of
purchase.

To reduce risk of damage, returns of product must be in an Industrial Computer Source shipping
container. If the original container has been lost or damaged, new shipping containers may be
obtained from Industrial Computer Source Customer Service at a nominal cost.

Limitation of Liability

In no event shall Industrial Computer Source be liable for any defect in hardware or software or loss or
inadequacy of data of any kind, or for any direct, indirect, incidental, or consequential damages in connection
with or arising out of the performance or use of any product furnished hereunder. Industrial Computer
Source liability shall in no event exceed the purchase price of the product purchased hereunder. The forego-
ing limitation of liability shall be equally applicable to any service provided by Industrial Computer Source
or its authorized agent.

Some Sales Items and Customized Systems are not subject to the guarantee and limited warranty. However
in these instances , any deviations will be disclosed prior to sales and noted in the original invoice. Industrial
Computer Source reserves the right to refuse returns or credits on software or special order items.

Page - vii

Table of Contents
FOREWARD .. iii
Guarantee .. v
Limited Warranty ... v
Return Procedure ... vi
Limitation of Liability ... vi

Chapter 1: Functional Description ...1-1
Analog Inputs .. 1-1

Input System Expansion.. 1-1

Reference Voltage Output ... 1-1

Counter/Timer ... 1-1

Interrupts ... 1-2

Utility Software .. 1-2

Enhancements .. 1-2

Specifications .. 1-3

How to remain CE Compliant .. 1-7

Chapter 2: Software Installation ..2-1
Software Provided ... 2-1

Hard Disk Installation .. 2-1

Installation Program ... 2-1

Findbase Routine ... 2-2

Configuration File .. 2-2

Base Address.. 2-3

Mux Extensions... 2-4

Voltage Range... 2-5

Bipolar/Unipolar Mode ... 2-5

IRQ Level .. 2-5

Chapter 3: Hardware Installation ...3-1
Option Selection .. 3-1

Interrupts ... 3-1

Base Address.. 3-2

Selecting a Base Address .. 3-2

Setting the Base Address ... 3-3

Using the Setup Program to set the Base Address ... 3-4

Calibration and Test .. 3-5

Calibration Procedure ... 3-5

Chapter 4: Programming the AIO8-P ...4-1
AIO8-P Register Address Map .. 4-1

Register Definitions ... 4-1

Control Register ... 4-1

Page - viii

Status Register ... 4-2

A/D Registers ... 4-2

Counter/Timer Registers .. 4-4

Programming Using the Driver .. 4-5

Using the Driver with Turbo or Borland C .. 4-6

Using the Driver with Microsoft C .. 4-7

Using the Driver with Turbo Pascal ... 4-7

Using the Driver with QuickBasic .. 4-8

Using the Driver with Basic ... 4-9

Using the Driver with Visual Basic ... 4-9

Chapter 5: AIO8-P Driver Reference .. 5-1
Using the Driver .. 5-1

The Point List Concept ... 5-1

Other Software Features ... 5-1

Task Summary .. 5-2

Task Reference ... 5-2

Summary of Error Codes .. 5-22

Chapter 6: A/D Converter Applications ...6-1
Connecting Analog Inputs ... 6-1

Noise Interference ... 6-1

Input Range and Resolution Specifications ... 6-1

Current Measurements ... 6-2

Measuring Large Voltages .. 6-2

Adding More Analog Inputs ... 6-2

Precautions - Noise, Ground Loops, and Overloads ... 6-3

Chapter 7: Programmable Interval Timer ..7-1
Operational Modes .. 7-1

Programming .. 7-2

Reading and Loading the Counters .. 7-4

Programming Examples ... 7-4

Programming Examples using the AIO8-PDRV Driver .. 7-5

Generating Square Waves of Programmed Frequency ... 7-5

Measuring Frequency and Period ... 7-6

Generating Time Delays .. 7-6

Pulse Terminal Count .. 7-6

Programmable One-Shot .. 7-6

Software Triggered Strobe .. 7-6

Hardware Triggered Strobe ... 7-6

Page - ix

Appendix A: Linearization ... A-1

Appendix B: Cabling and Connector Information ... B-1

Appendix C: Base Integer Variable Storage ... C-1

CE Declaration of Conformity

List of Figures
Figure 1-1: AIO8-P Block Diagram .. 1-7

Figure 3-1: AIO8-P Option Selection Map.. 3-6

List of Tables
Table 2-1: Configuration File Example ... 2-3

Table 3-1: Standard Base Address Assignments .. 3-3

Table 3-2: Base Address Example .. 3-4

Current Revision 13B

August 1997

Page - x

This page intentionally left blank

Chapter 1: Functional Description

Manual Number: 00650-013-13 Page 1-1

Chapter 1: Functional Description

The AIO8-P is a multifunction, moderate-speed analog-to-digital converter card with counter/tim-
ers. This card may be used in IBM Personal Computers and other compatible computers. The card
requires one slot in the computer. All external connections are made through a standard 37-pin D-
type connector at the rear of the computer. The following paragraphs describe the functions pro-
vided by the AIO8-P card.

Analog Inputs

The card accepts eight single-ended analog input channels. In the case of the AIO8-P, the full scale
input for all channels is ±5V (0.00244V resolution). Inputs are single-ended with a common ground
and can withstand overvoltages up to ±30 volts and brief transients of several hundred volts. When
power is off, the inputs are open-circuited providing fail-safe operation.

The eight analog inputs are DIP-switch selectable as either differential or single-ended inputs. The
analog-to-digital converter (A/D) is a 12-bit successive-approximation type with a sample and hold
input. Conversion time is typically 25µSec, (35µSec, maximum) and, depending on the speed of the
software and computer platform, throughputs of up to 30,000 conversions per second are attainable.

Input System Expansion

The AIO8-P card may be used alone or it can support up to eight AT16-P or LVDT8-P analog input
expansion cards. An 4-bit standard LSTTL logic output from the AIO8-P is used to select one of 16
analog input channels at the AT16-P. When interfacing to the LVDT8-P, three bits are used to select
one of eight LVDT8-P inputs. Since the eight-input multiplexer on the AIO8-P card is software
addressable, an input expansion card may be connected to each input, for a maximum of 128 chan-
nels in the system. If more than 128 analog inputs are required, a second AIO8-P with companion
input expansion cards can be used.

Reference Voltage Output

A precision +10.0V (±0.1V) reference voltage output is derived from the A/D converter reference
and is available as an output from the AIO8-P. The reference voltage can source or sink up to 2mA.

PC bus power (+5V, +12V, -12V) is also provided at the rear connector. This allows additional user-
designed interfaces for input signal conditioning, expansion multiplexers, etc.

Counter/Timer

The AIO8-P includes a type 8253-5 counter/timer which has three 16-bit programmable down counters.
This chip is used for event counting, pulse and waveform generation, frequency and period measure-
ment etc. A/D conversion cycles may be initiated by the Counter/Timer by installing a jumper on the
I/O connector Also, software provided by Industrial Computer Source includes the means to use
these counters to provide programmable gain commands to the instrumentation amplifier on the
AT16-P expansion sub-multiplexer card. Refer to Chapter 7: Programmable Interval Timer for a
description of the functions of the 8253 counter/timer chip.

Manual Number: 00650-013-13Page 1-2

AIO8-P Manual

Interrupts

Interrupts are supported from external inputs. Selection of the interrupt levels (IRQ2-7), is made by
jumper. Interrupts are software enabled and disabled. An interrupt request may be canceled by
either of the following signals:

A. The computer reset signal.

B. The writing of a command word to the card. That is, either updating the channel selection multi-
plexer on the AT16-P expansion card, or the AIO8-P multiplexer.

Utility Software

Utility software included with the AIO8-P is provided on a diskette. Two menu-driven setup pro-
grams, a driver, in linkable object form and binary form, and sample programs are provided. One
setup program is a configuration and calibration tool for the AIO8(SETAIO8), the second setup
program (SETMUX) is used when an AT16-P and / or LVDT8-P is used in conjunction with the
AIO8-P. In the case of the AT16-P, gains are assignable on a channel-by-channel basis. Lineariza-
tion for all the commonly used thermocouple types as well as for platinum RTD’s is also menu
selectable.

A driver configuration file is generated or modified by the setup program and can be used to config-
ure the AIO8-P driver. Chapter 2: Software Installation describes the format of this configuration
file. This driver has 17 Tasks as will be described in detail in Chapter 5: AIO8-P Driver Reference
of this manual.

Sample programs are provided in BASIC, QuickBASIC, Pascal and “C”.

Enhancements

Capabilities of the AIO8-P can be greatly enhanced by use of one or more of the following hardware
devices or software packages:

Chapter 1: Functional Description

Manual Number: 00650-013-13 Page 1-3

A. UTB-K Screw Terminal Cards.

The UTB-K universal termination assembly provides screw terminals to facilitate field wiring
to the AIO8(G)-P I/O boards. The UTB-K includes a metal enclosure to protect field terminations
from environmental factors and to provide an easy mounting method for the termination assembly.

The card provides a breadboard area with ±12V and +5V computer power. This breadboard
area can be used for amplifiers, filters, and other user-assembled circuits.

B. AT16-P Expansion Multiplexer and Instrumentation Amplifier

The AT16-P is a 16-channel amplifier/multiplexer that features differential-input capability
and a choice of either DIP switch selectable gains or software programmable gains. The AT16-
P allows multiplexing of 16 analog input signals to a single AIO8-P analog input channel. As
described earlier, up to eight AT16-P’s can be connected to a single AIO8-P to provide input
capability for up to 128 analog inputs.

The AT16-P includes a low-drift instrumentation amplifier with DIP switch selectable gains
of 0.5, 1, 2, 5, 10, 25, 50, 100, 200, 500, and 1000. In addition, these gains can be software
programmed to provide individual gains on a channel-by-channel basis.

For thermocouple measurements, a cold junction sensor is provided to allow reference
junction compensation, via software, for thermocouple inputs. The reference junction output may
be assigned to channel 0 of the AT16-P or, alternatively, may be jumpered to an unused AD12-
8 input channel. Open-thermocouple or “break detect” circuitry is provided.

The AT16-P may also be used with 3-wire RTD’s (AT16-PR), strain gages, and 4-20mA
current transmitter inputs. In this latter case, an application-specific version, the AT16-PI, is
available.

C. LVDT8-P Multiplexer and Interface Card

This card provides AC excitation and signal conditioning to eight independent LVDT
transducers. As many as eight LVDT8-P’s may be connected to an AIO8-P to accommodate up
to 64 transducers.

D. LABTECH NOTEBOOK

Labtech Notebook is a menu-driven data acquisition software package. It is capable of
foreground or background operation. Additional capabilities including ICON setup, variable
sample rates on a channel-by-channel basis, additional mathematical and statistical calculations,
and compatibility with expanded memory.

Specifications

ANALOG INPUTS

Channels

8 single-ended inputs with common ground.

Manual Number: 00650-013-13Page 1-4

AIO8-P Manual

Voltage Range

±5V

Resolution

12 binary bits.

Accuracy

±0.05% of reading ±1 LSB.

Input Impedance

10Mega-ohms or 125nA at 25° C.

Overvoltage

±30VDC

Linearity

±1 LSB.

Temperature. Coefficient

±10 µV/°C zero stability

±25 µV/°C gain stability

Common Mode Rejection (when used with AT16-P)

90 dB when gain = 1

125 dB when gain = 100

Throughput

30,000 conversions per second maximum.

REFERENCE VOLTAGE OUTPUT

Voltage

10.0VDC ±0.1VDC at up to 2mA.

DIGITAL I/O

Chapter 1: Functional Description

Manual Number: 00650-013-13 Page 1-5

Inputs

Logic high: 2.4 to 5.0 VDC at 20µA source current.

Logic low: 0 to 0.8 VDC at -0.4mA sink current.

Outputs

Logic high: 2.4V to 5.0V at 0.4mA source current.

Logic low: 0V to 0.4V at 8mA sink current.

INTERRUPT CHANNEL

Levels

Levels 2 through 7, jumper selectable.

Enable

Via software.

Source

External input.

PROGRAMMABLE TIMER

Type

8253-5 Programmable Interval Timer.

Counters

Three 16-bit down counters,

Output Drive

2.2mA at 0.45V (5 LSTTL loads).

Input Load

±10µA, TTL/DTL/CMOS compatible, gate and clock.

Clock Frequency

DC to 10MHz.

Active Count Edge

Negative edge.

Manual Number: 00650-013-13Page 1-6

AIO8-P Manual

Min Clock Pulse Width

50nS high/50nS low.

Timer Range

2.5 MHz to <1 pulse/hr.

ENVIRONMENTAL

Operating Temp

0 to 60°C.

Storage Temp

-40° to 100°C.

Humidity

0 to 90% RH, non-condensing.

Size

7.0 inches long, requires full-size slot.

Power Required

+5VDC: 320mA maximum

+12VDC: 10mA maximum

-12VDC: 15mA maximum

Chapter 1: Functional Description

Manual Number: 00650-013-13 Page 1-7

PC/XT/AT BUS

INTERRUPT
LOGICINTERRUPT

3
DIGITAL
INPUTS

4
DIGITAL

OUTPUTS

8 S.E.
ANALOG
INPUTS

LEVELS
2-7

CONTROL
REGISTER

8 CHANNEL
MUX

S/H
AMP

12-BIT
A/D

CONVERTER

REF.
VOLTAGE

REF.
VOLTAGE
OUTPUT

OUTPUT

GATE

CLOCK

CLOCK

CLOCK

BUS CLOCK/2

GATE

GATE

OUTPUT

OUTPUT

CTR0

8
2
5
3

CTR1

CTR2

STATUS
REGISTER

ADDRESS
DECODE

AND
BUS INTERFACE

2

Figure 1-1: AIO8-P Block Diagram

How to remain CE Compliant

In order for machines to remain CE compliant, only CE compliant parts may be used. To keep a
chassis compliant it must contain only compliant cards, and for cards to remain compliant they must
be used in compliant chassis. Any modifications made to the equipment may affect the CE compli-
ance standards and should not be done unless approved in writing by Industrial Computer Source.

The Model AIO8-P is designed to be CE Compliant when used in an CE compliant chassis. Main-
taining CE Compliance also requires proper cabling and termination techniques. The user is advised
to follow proper cabling techniques from sensor to interface to ensure a complete CE Compliant
system. Industrial Computer Source does not offer engineering services for designing cabling or
termination systems. Although Industrial Computer Source offers accessory cables and termination
panels, it is the user's responsibility to ensure they are installed with proper shielding to maintain CE
Compliance.

Manual Number: 00650-013-13Page 1-8

AIO8-P Manual

This page intentionally left blank

Chapter 2: Software Installation

Manual Number: 00650-013-13 Page 2-1

Chapter 2: Software Installation

Software Provided

The following utility software is provided with AIO8-P in MS-DOS format on a floppy disk:

A. A menu-driven setup and calibration program SETAIO8.EXE .

B. A menu-driven setup and calibration program for the sub-multiplexer cards, SETMUX.EXE .

C. A standard driver program provided in three forms; a BASIC loadable file called AIO8DRV.BIN ,
a “C” language linkable file called AIO8DRVC.OBJ , and a QuickBASIC and Pascal linkable file
called AIO8DRV.OBJ . All forms of the driver were created using Turbo Assembler, by Borland.

D. A program to locate available address space, FINDBASE.EXE

E. Sample programs in BASIC, QuickBASIC, “C”, Pascal, and a VisualBasic DLL.

F. A utility program that allows you to generate up to a 10th order polynomial approximation,
POLY.EXE (refer to Appendix A)

Hard Disk Installation

Installation Program

The software should be installed before the card is physically installed in the chassis. A setup
routine titled SETAIO8.EXE, describes how to set all the address switches and jumpers on the
card. Each of the settings is also described in its appropriate section of this manual.

The AIO8-P Software Package utilizes compression schemes to simplify installation and to permit
the use of a single diskette for shipment. A program is provided on your master disk to copy and
expand the AIO8-P Software Package onto your hard-drive. To begin the installation, place the
AIO8-P master diskette in a floppy drive and execute the INSTALL.EXE program. For example, if
you have placed the master disk in floppy drive A, you would type A:INSTALL to execute the
installation program.

The installation program will ask you for various installation options, and will provide default
settings. These default settings may be selected (by pressing ENTER) if they will work with your
particular application and system setup, or respond to the questions with appropriate answers as
needed.

When all of the installation options have been set, the program will expand the AIO8-P program
files into the destination you have selected. Once this process is complete, please put your Indus-
trial Computer Source AIO8-P Master Diskette in a safe place as backup.

The installation process will create the following directory structure on your destination disk:

Manual Number: 00650-013-13Page 2-2

AIO8-P Manual

AIO8-P Contains the SETAIO8.EXE setup and calibration program, the SETMUX.EXE
sub-multiplexer card setup and calibration program, and POLY.EXE, the lineariza-
tion polynomial program.

PSAMPLES Contains Pascal samples and the Pascal-linkable driver. Sub-directory of AIO8-P.

CSAMPLES Contains “C” samples and the “C”-linkable driver. Sub-directory of AIO8-P.

BSAMPLES Contains the BASIC and QuickBASIC samples as well as the binary and linkable
drivers. Sub-directory of AIO8-P.

Findbase Routine

One of the programs included in the installation is a routine titled FINDBASE.EXE. This pro-
gram can be used to find an unused section of I/O memory to assign to the AIO8-P. It simplifies
base address selection. The program will scan your computer's I/O ports for available locations
which would be suitable for the card. The program asks you to pick the number of address bytes
required from the supplied list. In this case, the AIO8-P requires 8 address bytes so select 8 from
the list. It will then present the first address location with that much space available. The instruc-
tions are self explanatory. A text file, FINDBASE.TXT contains more information on its use.

Configuration File

The Configuration File has several purposes; most of which are associated with use of the software
drivers provided with your AIO8-P card. These are as follows:

A. Provide means to automatically configure the driver and, thus, avoid need for multiple calls to the
driver to do the setup.

B. Allow the setup programs to do the work of configuring the driver. When you use the setup programs
to assist in configuring the card, this information is saved in the configuration file and can then be
used by the drivers.

C. When you use the EASY Industrial Computer Source’s software package, that software uses the
configuration file to configure itself.

The Configuration File, SETUP.CFG, is generated or modified with the setup programs. It can
also be generated or modified by an editor or a word processor in the non-document mode. This
file is a structured file containing setup information for:

• AIO8-P plug in PC card.

• AT16-P sub-multiplexer card.

• LVDT-8 sub-multiplexer card.

• Programmable gain assignments.

• Curve assignments.

Chapter 2: Software Installation

Manual Number: 00650-013-13 Page 2-3

The configuration file must contain 12 lines of information or data. The file is strictly text only
(ASCII). Each line of information is made up of a description field, an equal sign (=), and a setup
information field. Each line in the configuration file supplies data for a specific parameter and
must be in the correct order. Table 2-1 contains an example of a configuration file.

If you use programmable gains on the AT16-P, the counters will not be available for general use.
The counters are required by the drivers to set the gain on the AT16-P.

Base Address = $300

A/D Channel 0 = 1:F:Tt3UUUUUUUUSSSSS

A/D Channel 1 = 2:UUUUUUUU

A/D Channel 2 = 0:U

A/D Channel 3 = 0:S

A/D Channel 4 = 0:S

A/D Channel 5 = 0:S

A/D Channel 6 = 0:S

A/D Channel 7 = 0:S

Voltage Range = 5

Bipolar/Unipolar = B

IRQ Channel = 3

Table 2-1: Configuration File Example

Base Address

Values may be entered as a decimal string, a hexadecimal string, or as a binary string. A decimal
string is any string of digits made up of the digits 0 through 9 as follows:

Decimal format ... DDDDD (e.g. 768)

Hexadecimal strings consist of a string of digits containing the digits 0 through 9 and the letters A
through F. Hexadecimal strings may be made up in one of two ways; Pascal or “C” as follows:

Pascal format $HHHH (e.g. $300)
"C" format 0xHHHH (e.g. 0x300)

Binary strings are made up of 0’s and 1’s preceded by a # as follows:

Binary format ... #bbbbbbbbbb (e.g. #1100000000)

Manual Number: 00650-013-13Page 2-4

AIO8-P Manual

Mux Extensions

The mux channel extension to the A/D board can be made up of an AT16-P description string, an
LVDT-8 description string, or a raw channel description string. The first character following the
“=” is a card code that defines which description string follows.

Card code 0 Raw A/D channel; i.e., no external sub-multiplexer is attached. The 0: may be
followed by one of three characters; T, U, or S.

T signifies that a reference junction on a sub-multiplexer card is directly attached
to the channel.

S signifies that the channel is skipped; i.e., not used.

U signifies that the channel is unskipped; i.e., treated as a normal A/D input.

Card code 1 An AT16-P sub-multiplexer is attached. Immediately following the 1: card code
will be a unit-of-measure code. Possible codes are F (units are degrees Fahrenheit),
C (units are degrees Celsius), and N (no units specified). Note: If N is used but a
thermocouple is installed, then the default is degrees F.

Following the unit-of-measure code is a series of 16 channel-code letters or numbers
that determine how the channel is to be used. Any of the following codes may be
used for each channel:

S: The channel is skipped; i.e., not used.

U: The channel is used (gain code 0).

T: The channel is used for a thermocouple reference junction.

t,k,j,e,r,s,b,a,u: The channel is used with the indicated thermocouple type or
platinum RTD attached. (“a” is used for RTD’s with an alpha of 392 and “u”
is used for RTD’s with an alpha of 385.)

A: The channel is to have automatic gain ranging. Note that the AT16-P gain
switches must be set for programmable gain for automatic gain ranging to
work properly.

0,1,2,3,4,5,6,7: The channel is to be set to the indicated gain. Gains associated with
these code numbers are defined in the gain table contained in TASK 4’s
reference in Chapter 5: AIO8-P Driver Reference. The AT16-P gain
switches must be set for programmable gain for this function to work
properly.

Card Code 2 An LVDT-8 sub-multiplexer card is attached. Following the card code is a series
of eight channel-code letters that define how the channels are to be used. The letters
are U for unskipped and S for skipped.

Chapter 2: Software Installation

Manual Number: 00650-013-13 Page 2-5

Voltage Range

Values indicate the voltage range that has been selected by jumpers on the card. The only possible
value for the AIO8-P is 5.

Bipolar/Unipolar Mode

A “B” signifies that the card is set to bipolar mode while a “U” indicates that the card is set to the
unipolar mode. The only value allowed for the AIO8-P is “B”.

IRQ Level

Values indicate which IRQ interrupt level will be used. Allowable values are 2 through 7. If the
setup program is used, it will put a 0 on this line if no interrupt level is selected. If the driver detects
a 0 on this line, it installs a default of IRQ3.

Example

Using the configuration file listed in Table 2-1: Configuration File Example, the information has
the following meaning:

A. The base address is set to hex 300 in Pascal format.

B. Channel 0 of the AIO8-P has an AT16-P sub-multiplexer card attached. The unit of measure for this
card is °F. The AT16-P channel 0 is used for reference junction, channel 1 is a “t” thermocouple type
input, channel 2 has a gain code of 3, channels 3 through 10 are used (gain code defaults to zero),
and the remaining channels are skipped (unused).

C. Channel 1 of the AIO8-P has an LVDT8-P attached, with all eight channels unskipped.

D. Channel 2 of the AIO8-P is a direct channel that is unskipped.

E. All other A/D channels are direct and skipped.

Manual Number: 00650-013-13Page 2-6

AIO8-P Manual

This page intentionally left blank

Chapter 3: Hardware Installation

Manual Number: 00650-013-13 Page 3-1

Chapter 3: Hardware Installation

Before installing the card, be sure to install the software as described in Chapter 2, and run the
SETAIO8.EXE program. Check the appropriate sections of this manual for further information on
address and option selection.

To install the card:

1. Perform the software installation as described in Chapter 2.

2. Run FINDBASE.EXE if required.

3. Turn off computer power.

4. Remove the computer cover.

5. Remove the blank I/O backplate.

6. Set the interrupt option jumpers as desired.

7. Set the Base Address.

8. Install the card in an I/O expansion slot. Attach cable to card.

9. Inspect for proper fit of the card and cable. Tighten the screws.

10. Replace the computer cover and apply power.

Option Selection

The AIO8-P card features are selected by hardware jumper. At least one of each of the option
categories must be selected if the card is to operate correctly. The setup program provided on
diskette with the card provides menu-driven pictorial presentations to help you quickly set up the
card.

You may also refer to Figure 3-1: Option Selection Map, and the following sections to set up the
card. The card should not be plugged into the computer at this time.

Interrupts

Interrupts originating from an external source (pin 24) are supported. Interrupts are enabled by
setting the IEN bit of Control Register #1 high. Selection of the interrupt source is made by jumper.

Interrupt levels IRQ2 through IRQ7 are available. The desired level is selected by installing a
jumper in one of the jumper locations marked IRQ2 through IRQ7.

Manual Number: 00650-013-13Page 3-2

AIO8-P Manual

Base Address

The following section shows you how to select and set the address.

Selecting a Base Address

You need to select an unused segment of eight consecutive I/O addresses. The base address will be
the first address in this segment. The base address may be selected anywhere on a 8-byte boundary
within the I/O address range 100-3FF hex providing that it does not overlap with other functions. If
you are uncertain of your avaialbe space, run the FINDBASE utility provided on the included
diskette. Refer to the Findbase section of Chapter 2 for further information.

The following procedure will show you how to select the base I/O address.

1) Check Table 3-1: Standard Base Address Assignments for a list of standard address assignments
and then check what addresses are used by any other I/O peripherals that are installed in your
computer. (Memory addressing is separate from I/O addressing, so there is no possible conflict with
any add-on memory that may be installed in your computer. We urge that you carefully review the
address assignment table before selecting a card address. If the addresses of two installed functions
overlap, unpredictable computer behavior will result.

2) From this list, select an unused portion of eight consecutive I/O address. Note from Table 3-1 that
the sections 280-2EF and 330-36F are unused. This address space is good area to select a base address
from. Also, if you are not using a given device in Table 3-1, then you may use that base address as
well. For example, most computers do not have a prototype card installed. If your computer does
not have one, then base address 300 hex is a good choice for a base address.

3) Finally make sure that the base address you have chosen has the last digit as 0 or 8. This insures that
your base address is on an 8-byte boundary.

Chapter 3: Hardware Installation

Manual Number: 00650-013-13 Page 3-3

Hex Range Usage

000-1FF Internal System - Not Usable

200-20F Game Control

 210-217 Expansion Unit

220-24F Reserved

278-27F Reserved

2E8-2EF Serial Port

2F0-2F7 Reserved

300-31F Asynchronous Communications (secondary)

320-32F Prototype Card

378-37F Fixed Disk

380-38C Printer

3A0-3A9 SDLC Communications

3B0-3BF Binary Synchronous Communications (primary)

3C0-3CF Reserved

3DO-3DF Color/Graphics

3E0-3E7 Reserved

3E8-3EF Serial Port

3F0-3F7 Diskette

3F8-3FF Asynchronous Comunications (primary)

Table 3-1: Standard Base Address Assignments

Setting the Base Address

The AIO8-P base address is selected by DIP switch S1 located in the lower right hand portion of
the card. Switch S1 controls address bits A3 through A9. Bits A0 through A2 are used for the eight
address locations in I/O space required by the AIO8-P. The following procedure will show you
how to set the base address. See Table 3-2: Base Address Example, for a graphic representation of
this example.

Manual Number: 00650-013-13Page 3-4

AIO8-P Manual

1) We will use base address 300 hex as an example. Determine the binary representation for your
base address. In our example, 300, the binary representation is 11 0000 0000. The conversion
multipliers for each binary bit are contained in FIGURE 3-3 for reference.

2) Locate switch S1 on the lower right side of the card. Note there are seven switches, which will
be used to set the seven most-significant bits in the binary representation from step 1).

3) Note from Table 3-2 that switch position A9 corresponds to the most significant bit in your
binary representation. For each bit in your binary representation, if the bit is a one, turn the
corresponding switch off; if the bit is zero, turn the corresponding switch on.

Hex Representation 3 0 0

Binary Representation 1 1 0 0 0 0 0

Conversion Multiplier 2 1 8 4 2 1 8

Switch ID A9 A8 A7 A6 A5 A4 A3

Switch Setting OFF OFF ON ON ON ON ON

Table 3-2: Base Address Example

Using the Setup Program to set the Base Address

The setup program provided on diskette with AIO8-P contains an interactive menu-driven program
to assist you in setting the base address. The following procedure demonstrates the use of the setup
program.

1) Choose a desired base address.

2) Execute the setup program by typing SETAIO8 and pressing the ENTER key.

3) Select the first item in the menu, 1) Set board address. with the up or down arrow key and press
ENTER.

4) Enter the desired base address in hex, the program will display a graphic representation of how
you should set the switches. You may press the space bar to try another address.

5) Set DIP switch S1 as shown on the graphic representation.

Chapter 3: Hardware Installation

Manual Number: 00650-013-13 Page 3-5

Calibration and Test

All Industrial Computer Source cards are calibrated prior to shipment. However, periodic calibra-
tion of AIO8-P is recommended to retain full accuracy. The calibration interval depends to a large
extent on the type of service that the card is subjected to. For environments where there are
frequent large changes of temperature and/or vibration, a three-month interval is suggested. For
laboratory or office conditions, six months to a year is acceptable.

A 4-1/2 digit digital multimeter is required as a minimum to perform satisfactory calibration. Also,
a voltage calibrator or a stable noise-free DC voltage source that can be used in conjunction with
the digital multimeter is required.

Calibration is performed using the SETAIO8 program on the diskette supplied with your card.
This program will lead you through the set up and calibration procedure with prompts and graphic
displays that show the settings and adjustment trim pots. This calibration program also serves as
a useful test of the AIO8-P A/D functions and can aid in troubleshooting if problems arise.

Calibration Procedure

The following procedure is brief and is intended for use in conjunction with the calibration part of
the SETAIO8 program.

1) Start the calibration program by typing SETAIO8 and press the ENTER key at the DOS prompt.

2) Use the relevant menu selections to set the switches and jumper for the manner in which the card will
be used; i.e., base address and IRQ. These settings are used by the calibration portion of the program.

3) Use the arrow key to select option 7) Calibrate, then press the ENTER key.

4) Use the arrow key to select option 1. Set Offset, from the Action Menu at the top left hand corner
of the screen.

5) Following the instructions on the screen, perform the offset adjustment

6) Use the arrow key to select option 2. Set Gain, from the Action Menu.

7) Following the instructions on the screen, perform the gain adjustment

8) Use the arrow key to select option 3. Check, from the Action Menu.

9) Following the instructions on the screen, perform the calibration check.

10) This completes the calibration procedure.

Manual Number: 00650-013-13Page 3-6

AIO8-P Manual

1

1

RP

2

2 7
IRQ

7

S1

Switch
S1 = Base Address

Potentiometers
RP1 = Gain Adjust
RP2 = Bipolar Offset

Jumpers
IRQ1 - IRQ7 = Select IRQ Level

Figure 3-1: AIO8-P Option Selection Map

Chapter 4: Programming The AIO8-P

Manual Number: 00650-013-13 Page 4-1

Chapter 4: Programming the AIO8-P

This chapter provides you with information on how to program the AIO8-P. First, information is
provided on how to program the card using direct register access. Following this is information on
using the drivers provided with the AIO8-P. If you plan to use the Industrial Computer Source
provided driver, refer to the section in this chapter, Programming Using the Driver, and to Chap-
ter 5: AIO8-P Driver Reference. The following section, Register Definitions, is informational
only for those of you planning to use the driver, but may be useful to gain an understanding of how
the card functions.

 At the lowest level, the AIO8-P can be programmed using direct I/O input and output instructions.
In BASICA, these are the INP (X) and OUT X,Y functions. Assembly language and most high
level languages have equivalent instructions. Use of these functions usually involves formatting
data and dealing with absolute I/O addresses. Although not demanding, this can require many lines
of code and requires an understanding of the devices, data format, and architecture of the AIO8-P.
You may find it easer to design your program using the supplied drivers.

AIO8-P Register Address Map

The AIO8-P uses eight consecutive addresses in I/O space as follows:

Register Address Read Function Write Function

Base Address + 0 A/D Low Byte Start 8-bit Conversion

Base Address + 1 A/D High Byte Start 12-bit Conversion

Base Address + 2 Status Register Control Register

Base Address + 3 Not Used Not Used

Base Address + 4 Read Counter # 0 Load Counter # 0

Base Address + 5 Read Counter # 1 Load Counter # 1

Base Address + 6 Read Counter # 2 Load Counter # 2

Base Address + 7 Not Used Control Counter

Register Definitions

Control Register

Base + 2 Write: Read or write the control register.

Manual Number: 00650-013-13Page 4-2

AIO8-P Manual

B7 B6 B5 B4 B3 B2 B1 B0

OP3 OP2 OP1 OP0 IEN MA2 MA1 MA0

-0P0-OP3: These bits correspond to four general-purpose digital output lines. These lines can
be used for external control functions such as selecting inputs from the AT16-P, or
LVDT8-P sub-multiplexer cards.

-IEN: This bit enables/disables AIO8-P external interrupts. 1 = enabled, 0 = disabled.
When enabled, external interrupts from pin 24 of the I/O connector are passed
through on the selected IRQ level.

-MA0-MA2: These bits select the analog mutiplexer channel address on the AIO8-P card
(Channels 0 through 7).

Status Register

The Status register provides information about the operation of the card.

Base + 2 Read: Read the card status.

B7 B6 B5 B4 B3 B2 B1 B0

BOC IP3 IP2 IP1 IRQ MA2 MA1 MA0

-EOC: End of conversion. If EOC = 1, an A/D conversion is underway. If EOC is 0, then
the A/D data registers contain valid data from the previous conversion and the A/
D is ready to perform the next conversion.

-IP1-IP3: These bits correspond to three general purpose digital input lines. They may be used
for any digital data input.

-IRQ: After generation of an interrupt, the AIO8-P card sets this bit high(1). It is reset to
state 0 by a computer reset, or a write to the control register.

-MA3-MA0: These bits define the analog multiplexer channel address on the AD12-8 card
(channels 0 through 7).

A/D Registers

A/D data are in true binary form and are latched in the A/D registers at the end of each conversion.
These are read at BASE ADDRESS and BASE ADDRESS +1 in low-byte/high-byte sequence.
The data are available until the end of the next A/D conversion.

Base + 0 Read: Contains the lower four bits of a 12-bit A/D conversion output in binary form.

Chapter 4: Programming The AIO8-P

Manual Number: 00650-013-13 Page 4-3

B7 B6 B5 B4 B3 B2 B1 B0

AD3 AD2 AD1 AD0 0 0 0 0

- AD0-AD3: The lower four bits of the A/D conversion, AD0 is the least-significant bit.

- B0-B3: These bits are always 0.

Base + 1 Read: Contains the upper eight bits of a 12-bit A/D conversion output in binary form, or
the results of an 8-bit conversion.

B7 B6 B5 B4 B3 B2 B1 B0

AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4

- AD4-AD11: The upper eight bits of the A/D conversion, AD4 is the least-significant bit.

The A/D data bits are offset-binary coded. The following table demonstrates the binary encoding
used.

Binary Hex Analog Input Voltage

 0000 0000 0000 000 -5.0000V (-Full Scale)

 0000 0000 0001 001 -4.9976

: : :

 0100 0000 0000 400 -2.5V (-.5 Scale)

: : :

 1000 0000 0000 800 ±0V

 1000 0000 0001 801 +0.0024V

: : :

 1100 0000 0000 C00 +2.5000V (+.5 Scale)

: : :

 1111 1111 1111 FFF +4.9976 (+Full Scale)

Base + 0 Write: A write to this location starts an 8-bit A/D conversion. The data written is
irrelevant. This causes the EOC bit of the status register to go high until the conversion is com-
plete.

Base + 1 Write: A write to this location starts a 12-bit A/D conversion. The data written is
irrelevant. This causes the EOC bit of the status register to go high until the conversion is com-
plete.

Manual Number: 00650-013-13Page 4-4

AIO8-P Manual

Counter/Timer Registers

Base + 4 Write/Read: Counter #0 read or write. When writing, this register is used to load a
counter value into the counter. The transfer is either a single or double byte transfer, depending on
the control byte written to the counter control register at BASE ADDRESS + 7. If a double byte
transfer is used, then the least-significant byte of the 16 bit value is written first, followed by the
most significant byte. When reading, the current count of the counter is read. The type of transfer
is also set by the control byte.

Additional information about the type 8253 counters is presented in Chapter 7: Programmable
Intrerval Timer section of this manual. However, for a full description of features of this ex-
tremely versatile IC, refer to the Intel 8253 data sheet.

Base + 5 Write/Read: Counter #1 read or write. See description for Base + 4 Write/Read.

Base + 6 Write/Read: Counter #2 read or write. See description for Base + 4 Write/Read.

Base + 7 Write: The counters are programmed by writing a control byte into a counter control
register at BASE ADDRESS + 7. The control byte specifies the counter to be programmed, the
counter mode, the type of read/write operation, and the modulus. The control byte format is as
follows:

B7 B6 B5 B4 B3 B2 B1 B0

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

-SC0-SC1: These bits select the counter that the control type is destined for.

SC1 SC0 Function

0 0 Program Counter 0

0 1 Program Counter 1

1 0 Program Counter 2

1 1 Illegal

-RW0-RW1: These bits select the read/write mode of the selected counter.

RW1 RW0 Function

0 0 Counter Latch Command

0 1 Read/Write LS Byte

1 0 Read/Write MS Byte

1 1 Read/Write LS Byte, then MS Byte

-M0-M2: These bits set the operational mode of the selected counter.

Chapter 4: Programming The AIO8-P

Manual Number: 00650-013-13 Page 4-5

Mode M2 M1 M0

0 0 0 0

1 0 0 1

2 X 1 0

3 X 1 1

4 1 0 0

5 1 0 1

-BCD: Set the selected counter to count in binary (BCD bit = 0) or BCD (BCD bit = 1).

Programming Using the Driver

Using direct register access to program the AIO8-P is straightforward but the coding can be rather
tedious. To assist you in building your application quickly, Industrial Computer Source provides a
driver. This driver is provided in three forms. Which form you use will depend on the program-
ming language that you intend to use in your application. A task reference for this driver is pro-
vided in Chapter 5: AIO8-P Driver Reference. The driver file names and their language use are
as follows:

AIO8DRV.BIN A BASIC loadable driver for use with most interpreted BASIC languages.

AIO8DRV.OBJ A Pascal and QuickBASIC linkable driver in object form.

AIO8DRVC.OBJ A “C” linkable driver in object form.

Also, to help you understand how to use the driver with your program, sample programs are pro-
vided in three languages; “C”, Pascal, and QuickBASIC.

SAMPLE 1 - Demonstrates data acquisition using polling with an AT16-P in programmable gain
mode.

SAMPLE 2 - Demonstrates timer-driven data acquisition using interrupts.

SAMPLE 3 - Same as Sample 1 but uses the configuration file to set up the driver.

To access the functions of the driver, a call to a single procedure within the driver is used. The
name of the procedure for the driver is AIO8DRV. The procedure is called with three variables,
which are defined as follows:

TASK The number of the task to perform. A reference with a list of tasks for each driver
are provided in Chapter 5: AIO8-P Driver Reference.

PARAMETERS This is an array of integers which contains information required by the driver.

Manual Number: 00650-013-13Page 4-6

AIO8-P Manual

Chapter 5: AIO8-P Driver Reference.defines what values need to be passed for
each task. The array should hold five integers.

STATUS An error code is returned in this variable. A zero is returned if there is no error.

When calling the procedure, certain important requirements must be met:

A. The three variables must be declared as global. When variables are declared global, the data segment
register of the processor will contain the segment of these variables, and the driver is designed to use
this segment. If variables are declared locally, the stack is the segment for the variables. The driver
would still use the data segment, which would cause it to write or read data in the wrong area of
memory.

B. The driver expects parameters to be integer type variables and will write to and read from the
variables on this assumption. The driver will not function properly if non-integer variables are used
in the call.

C. The variables should be passed by reference. The driver expects offsets of the variables so that data
may be returned when required.

D. The passed variables are positional. That is, the variables must be specified in the sequence (task,
parameters, status). Their location is derived sequentially from the variable pointers on the stack.

E. The driver will not function properly if arithmetic functions (+, -, x, etc) are specified within the
variable list bracket.

Using the Driver with Turbo or Borland C

The following list shows you how to use the driver with Borland or Turbo C. You may refer to any
of the “C” example programs for further illustration.

A. Include the AIO8DRVC.h header in your program. This simple header provides a function prototype
of the procedure call.

#include "aio8drvc.h"

B. Declare the three variables for the driver globally, at the beginning of your program.

int task,params[5],status;

C. Make your assignment to these variables as desired for the function you wish to perform. See
Chapter 5: AIO8-P Driver Reference for details on each task.

D. Make the call to the driver, passing the offset of each parameter.

aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(status));

E. Create a project file within the Turbo C environment, and add the name of your program with the .C
extension, and the name of the driver with a .OBJ extension.

Chapter 4: Programming The AIO8-P

Manual Number: 00650-013-13 Page 4-7

F. Select “LARGE” memory model under the compiler section of the options menu.

G. Compile and link the program.

Using the Driver with Microsoft C

To use the driver with Microsoft C version 6.0, add the following code to your application code as
shown below:

_asm
{
push DS
mov AX,ES
mov DS,AX
}
/* call driver as normal */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(status));
_asm
{
pop DS
}

If you are using a version of Microsoft C prior to version 6.0 use the following code:

_asm _emit 0x1E
_asm _emit 0x8E
_asm _emit 0xD8
/* call driver as normal */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(status));
_asm _emit 0x1F

These changes work around a peculiarity of Microsoft C, enabling our drivers to locate the vari-
ables used in the program.

Using the Driver with Turbo Pascal

The following procedure will show you how to use the driver with Borland Turbo Pascal. You may
refer to any of the Pascal example programs for further illustration.

A. Include the following compiler directive at the beginning of your program.

{$L aio8drv}

B. Declare the three variables for the driver globally, at the beginning of the program.

type param_array = array[1..5] of integer;
var params : param_array;
task,status : integer;

C. Declare the driver function as external in using a prototype declaration

procedure aio8drv(task:word; param:word; status:word);external;

Manual Number: 00650-013-13Page 4-8

AIO8-P Manual

D. Make your assignment to these variables as desired for the function you wish to perform. See Chapter
5: AIO8-P Driver Reference. for details on each task.

E. Make the call to the driver.

aio8drv(ofs(task),ofs(params),ofs(status));

F. Compile and link the program.

Using the Driver with QuickBasic

The following procedure will show you how to use the driver with Microsoft QuickBASIC. You
may refer to any of the QuickBASIC sample programs for further illustration. The following
procedure will allow you to use the driver both in the QuickBASIC environment and from the
command line compiler.

A. Declare the three variables for the driver as global.

DIM TASK%, STAT%, PARAMS%(5)

B. The array dimension statement must be followed by the COMMON SHARED statement for the
driver to be able to find the array. Note: Steps A and B are necessary for any array that will be used
by the driver. Certain tasks within the driver require the address of a data buffer, so these two steps
would need to be performed for those arrays as well.

COMMON SHARED PARAM%()

C. Now DECLARE the driver routine. This declaration must include a BYVAL statement before the
array variable.

DECLARE SUB AIO8DRV(TASK%, BYVAL PARAM%, STAT%)

D. Make your assignment to these variables as desired for the function you wish to perform. See Chapter
5: AIO8-P Driver Reference for details on each task.

E. Make the call to the driver. The CALL statement must explicitly pass the offset of the array variable.

CALL AIO8DRV(TASK%, VARPTR(PARAM%(1)), STAT%)

F. To use the program and driver in the environment, you must link a Quick Library. Perform the
following command from the command line.

LINK /Q AIO8DRV.OBJ,AIO8DRV.QLB,,BQLB45.LIB; [ENTER]

G. Now load the Quick Library when starting the environment.

QB /L AIO8DRV.QLB [ENTER]

H. Use the start command from the run menu to execute the program.

Chapter 4: Programming The AIO8-P

Manual Number: 00650-013-13 Page 4-9

I. To prepare an EXE file from the command line, use the following compile and link commands.

BC /o YOURPROG;[ENTER]
LINK YOURPROG+AIO8DRV;[ENTER]

Using the Driver with Basic

The following procedure will show you how to use the driver with most BASIC languages. You
may refer to any of the BASIC sample programs for further illustration.

A. Declare the three variables for the driver as global.

10 DIM TASK%, STAT%, PARAMS(5)

B. Define a segment within memory to load the driver. You must make sure this segment is not used
by BASIC or your program. You may do this by estimating the amount of memory used by your
program and the BASIC interpreter you are using, then choosing a segment well above this area.

20 DRIVERSEG = &H5000
30 DEF SEG = DRIVERSEG

C. Load the driver into memory starting at offset 0 within the defined segment.

40 DRIVER = 0
50 BLOAD “aio8drv.bin”,DRIVER

D. Make your assignment to these variables as desired for the function you wish to perform. See Chapter
5: AIO8-P Driver Reference for details on each task.

E. Make the call to the driver.

60 CALL aio8drv(TASK%,PARAMS%(1),STATUS%)

Using the Driver with Visual Basic

Included with the supplied software is a DLL (Dynamic Link Library) called VBACCES.DLL. It
is compatible with Visual Basic version 3.0. VBACCES.DLL must be copied to your Windows
directory. Also included is a sample program to help you interface this DLL with Visual Basic.
The program is titled VBACCES.FRM , and its global definition file is VBACCES.GBL . The
information in the .GBL file must be contained in any application that uses the DLL, but does not
have to be in a separate file. A project file VBACCES.MAK is also included.

The commands provided are:

OutPort, Outportb: Allows write access to the I/O bus, similar to the C language outport and
outportb functions.

InPort, InPortb: Allows read access to the I/O bus, similar to the C language inport and
inportb functions.

Manual Number: 00650-013-13Page 4-10

AIO8-P Manual

Peek, Poke: Allows read and write access to RAM, similar to BASIC's Peek and Poke
statements.

Please refere to the VBACCES.GBL file for programming information related to the above func-
tion.

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-1

Chapter 5: AIO8-P Driver Reference

This chapter provides detailed information on the functions available from the AIO8-P driver. The
chapter is divided into four sections, first is a section detailing the use of this driver, second is a
task summary, third is the task reference and last is an error code summary.

Using the Driver

The Point List Concept

Most functions of this driver work with a point list. The point list is a list of point addresses in the
order that you desire to have conversions performed. A point address is a number specifying the
channel of the AIO8-P and an AT16-P or LVDT8-P(if used). The first 16 point addresses (0-15)
refer to the AT16-P channels for an AT16-P attached to channel 0 of the AIO8-P. The second 16
point addresses (16-31) refer to the 16 channels of an AT16-P attached to channel 1 of the AIO8-P,
and so on. Thus, with eight single ended A/D channels, a point address may be as large as 127.

If your are using LVDT8-Ps, then the first eight point address (0-7) refer to the LVDT8-P attached
to channel 0 of the AIO8-P. The second eight point addresses are not used (8-15). Thus with eight
single-ended A/D channels, a point address may still be as large as 127, but there would only be a
maximum of 64 LVDT8-P channels.

You may install point addresses into the point list in any order, or with multiple entries for the same
point address. For example the order could be 15-12-12-11-9-127-1-1-0 etc. The order that point
addresses are installed in the point list is the order in which you call the driver to install them. Each
new entry is appended to the end of the list.

A point list index is used by the driver to keep track of which point address is the next to be
converted. After each conversion the index is incremented to the next position in the list. When
the index reaches the end of the list it is automatically reset to the start of the list. If you desire to
set the list index to the start of the list at any time, you may use TASK 11.

The point list is dynamic. During program operation, if you desire to clear the point list and add a
different set of points, this is done quite easily using the tasks provided.

The main advantages of a point list are that conversions can be done in any order and the driver
takes care of setting the AT16-P and/or LVDT8-P channel and the AD12-8 channel, as well as
gains, linearization and scaling.

Other Software Features

The driver provides the ability to use the programmable gain feature of the AT16-P. You may
assign gains to a given point address directly. Each point address may have its own gain code
associated with it. This is useful when differing input ranges are desired using the same AT16-P.
When using this feature, the counters are not available, as they are used to set the AT16-P gains.

Manual Number: 00650-013-13Page 5-2

AIO8-P Manual

The driver also provides the ability to make a function assignment to each individual point address.
You may assign a thermocouple curve or a scaling range to a point address. Look up tables are
contained in the driver to convert counts to the proper temperature. Reference junction compensa-
tion may also be performed.

The AIO8-P combined with the AT16-P and this driver provide an excellent tool to handle most
kinds of data acquisition signals.

Task Summary

TASK 0: Driver initialization.

TASK 1: Check A/D operations.

TASK 2: Fetch gain code for a given point address.

TASK 3: Fetch point address from the point list.

TASK 4: Assign gain code to a range of point addresses.

TASK 5: Assign range of point addresses to the point list

TASK 6: Perform conversion of the given point address.

TASK 7: Perform conversion on next point address in the point list.

TASK 8: Perform multiple conversions from the point list using polling.

TASK 9: Perform multiple conversions from the point list using interrupts.

TASK 10: Function assignments.

TASK 11: Reset operations.

TASK 12: Write digital output.

TASK 13: Read digital input.

TASK 14: Load counter/timers.

TASK 15: Read counter/timers.

TASK 16: Measure frequency.

TASK 17: Measure period or pulse width.

Task Reference

TASK 0: Initialize

This task provides the driver with information on the card setup. This task should be called once at
the beginning of the program, before any other tasks are called. If other tasks are called first, they
will return error code 1.

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-3

Notes:

1) This task also calls TASK 1 to test if the card is functioning.

2) Disables all interrupt and counter activity.

3) Initializes the point list to have point addresses for each channel of the AIO8-P, with none for the
AT16-P or LVDT8-P (i.e. point addresses 0, 16, 32, 48 112).

4) Initializes the function list for each point address to a gain code of 0 and no functions performed on
conversion counts.

5) Information for the setup of the driver may be obtained either from the configuration file or from the
parameters passed to the driver. The configuration file is created by using the SETAIO8-P and
SETMUX setup programs, or by a word processor/text editor in the non-document mode. The driver
will read the configuration file and set up the driver accordingly if params[0] = 0.

6) If no AT16-P or LVDT8-P is to be used, use 1 for params[2].

Input:

params[0]: Base Address

params[1]: Type of initialization
0 = Automatic initialization using the configuration file, no other

parameters are required.
1 = Manual initialization using information provided in the passed

parameters.

params[2]: AT16-P mode
0 = AT16-P using programmable gains
1 = AT16-P using manual gains.

Output:

Data: None

Error Codes

status = 0: No error.

status = 1; Invalid task number, task > 17 or driver not initialized.

status = 2: Invalid base address, params[0] > 0x3f8 or < 0x200

status = 3: Card does not respond.

status = 15: Invalid AT16-P mode.

status = 20: Error opening configuration file.

status = 21: Error reading configuration file.

status = 22: Invalid configuration file data.

Manual Number: 00650-013-13Page 5-4

AIO8-P Manual

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 0;
params[0] = 0x300; /* base address = 300 hex */
params[1] = 1; /* manual initialization */
params[2] = 1; /* AT16-P using manual gains */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 1: Check A/D Operations

This task checks for proper operation of the analog-to-digital converter.

Notes:

1) This task is called internally by the driver when TASK 0 is called.

Input:

None

Output:

Data: None

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 1;
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 2: Fetch Gain Code for a Point Address

Returns a previously assigned gain code for a given point address.

Notes:

1) This task cannot be called if the AT16-P is in the manual mode.

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-5

Input:

params[0]: Point address.

Output:

Data: params[1]: Gain code for the given point address.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 5: Invalid point address, or index.

status = 18: AT16-P in manual mode.

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 2;
params[0] = 14; /* fetch gain code for point

 address 14*/
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 3: Fetch Point Address for a Point List Index

Returns a previously assigned point address for a given point list index.

Notes:

None.

Input:

params[0]: Point list index.

Output:

Data: params[1]: Point address for the given point list index.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 5: Invalid point address, or index.

Manual Number: 00650-013-13Page 5-6

AIO8-P Manual

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 3;
params[0] = 6; /* fetch point address for the

 6th point in the point list*/
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 4: Assign Gain Code to Range of Point Addresses

Assigns a given gain code to a given range of point addresses.

Notes:

1) The first point address of the range must be less than or equal to the last point address. To assign
a gain code to a single point address, make the first and last point address equal.

2) The following are the possible gain codes.

Gain
Code

AT16-P Output Range Switch Settings

G/2 OFF G/2 ON

0 Gain = 1 Gain = 0.5

1 Gain = 2 Gain = 1

2 Gain = 10 Gain = 5

3 Gain = 50 Gain = 25

4 Gain = 100 Gain = 50

5 Gain = 200 Gain = 100

6 Gain = 400 Gain = 200

7 Gain = 1000 Gain = 500

8 Auto Range

3) These gain code settings are only meaningful if the AT16-P is being used, and the driver has been
confgured for programmable gains in TASK 0.

4) A gain code of 8 indicates an auto range channel. When the point address is read, the driver will
first read at a gain of 2 (gain code 1), and from this reading, determine the best gain to use for the
second reading to achieve the best resolution.

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-7

Input:

params[0]: First point in point address range.
params[1]: Last point in point address range.
params[2]: Gain code to assign.

Output:

Data: None.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 5: Invalid point address, or index.

status = 6: Invalid gain code.

status = 18: AT16-P in manual mode.

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 4;
params[0] = 1; /* first point address in

 range*/
params[1] = 15; /* last point address in range

 /* gain code of 3 */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 5: Assign Point Addresses to the Point List

Assigns a range of point addresses to the point list.

Notes:

1) All point addresses added to the point list are appended to the end of the point list, after any that have
been previously added, including the default point address. If you desire to start with an empty list,
then use TASK 11, SUBTASK 2 to clear the point list first.

2) If the first point address is larger than the last point address, then the driver will install them in
descending order.

3) Point addresses that are not on a 16 boundary (0, 16, 32 ,48 etc) are only meaningful if one or more
AT16-Ps or LVDT8-Ps are attached.

Input:

params[0]: First point address in range.
params[1]: Last point address in range.

Manual Number: 00650-013-13Page 5-8

AIO8-P Manual

Output:

Data: None.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 4: Point list error, list full.

status = 5: Invalid point address, or index.

Example:

int task,params[5],status; /* these are globally
 declared variables */

task = 5;
params[0] = 0; /* first point address in

 range*/
params[1] = 31; /* last point address in

range, two AT16-Ps */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 6: Fetch Data from a Point Address

Perform a conversion on the point address indicated.

Notes:

1) This task does not use the point list. If you wish to fetch data from the next point in the point list then
use TASK 7.

2) Point addresses that are not on a 16 boundary (0, 16, 32 ,48 etc) are only meaningful if the AT16-
P OR LVDT8-P is being used.

Input:

params[0]: Point address to fetch data from.

Output:

Data: params[1]: Resulting conversion
params[2]: Gain code used.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

status = 5: Invalid point address, or index.

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-9

Example:

int task,params[5],status; /* these are globally declared
 variables */

task =6;
params[0] = 16; */ fetch data from point address

*/
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 7: Fetch Data from next Point Address in List

Perform a conversion on the point address in the point list indicated by the point list index.

Notes:

1) Each time a point is fetched from the list, the list index is incremented. The list index can be reset
to the start of the point list by using TASK 11, SUBTASK 1

Input:

None.

Output:

Data: params[0]: Point address converted.
params[1]: Resulting conversion data.
params[2]: Gain code used.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

status = 5: Invalid point address, or index.

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 7;
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 8: Fetch Multiple Buffered Conversions

Fetch multiple conversions from the point list, using polling.

Notes:

1) Each time a point is fetched from the list, the list index is incremented. The list index can be reset

Manual Number: 00650-013-13Page 5-10

AIO8-P Manual

to the beginning of the point list by TASK 11, SUBTASK 1.

2) This task uses two buffers, a data buffer and a point/gain buffer. Both buffers should be integer
buffers of the same length. The number of conversions must not exceed the length of the shortest
buffer, or else other areas of computer memory may be corrupted, causing unpredictable computer
behavior. The driver has no criteria to evaluate the validity of the pointer. It is incumbent upon the
application program to supply a valid buffer pointer.

3) The point and gain for each analog input is returned in the point/gain buffer. The point address and
gain are packed into one integer with the point address in the upper eight bits and the gain in the lower
eight bits.

4) The buffers must be declared globally or the driver will not be able to find their segment.

Input:

params[0]: Offset of the data buffer address.
params[1]: Offset of the point/gain buffer address.
params[2]: Number of conversions to make.

Output:

Data: params[3]: Number of conversions completed.

The buffers will contain the conversions and the point/gain data respectively.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

status = 5: Point list error, list empty.

Example:

int task,params[5],status; /* these are globally declared
 variables */

int datbuf[100],chnbuf[100]; /* these are globally
 declared variables */

task = 8;
params[0] = FP_OFF(datbuf); /* pass offset of data buffer */
params[1] = FP_OFF(chnbuf); /* pass offset of point/gain

 buffer */
params[2] = 100; /* number of conversions */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-11

TASK 9: Interrupt Driven Data Acquisition

Provides subtasks to perform buffered data acquisition using interrupts. Sub task functions include
initiating the interrupt conversions, checking for completion and stopping the interrupt process.

Notes:

1) Each time a point is fetched from the list, the list index is incremented. The list index can be reset
to the beginning of the point list by TASK 11.

2) This task uses two buffers, a data buffer and a point/gain buffer. Both buffers should be integer
buffers of the same length. The number of conversions must not exceed the length of the shortest
buffer., or else other areas of computer memory may be corrupted, causing unpredictable computer
behavior. The driver has no criteria to evaluate the validity of the pointer. It is incumbent upon the
application program to supply a valid buffer pointer.

3) The point and gain for each analog input is returned in the point/gain buffer. The point address and
gain are packed into one integer with the point address in the upper eight bits and the gain in the lower
eight bits.

4) The buffers must be declared globally or the driver will not be able to find their segment.

5) This task has several functions, each having its own required parameters.

6) If the timers are used to generate the start-conversion signals, then they should be configured using
TASK 14, before calling TASK 9.

7) SUBTASK 3 is used to disable interrupts before completion of the scan. When the scan completes
normally, the interrupts are disabled automatically.

8) Interrupts are generated by an external source. This source is connected to the card via pin 24 of the
external connector. One of the on board counters may be used for this source, providing that any
AT16-P’s in the system are being operated in the manual mode. If using a counter you must set up
the counter using TASK 14, then connecting the counter’s output to pin 24.

Input:

params[0]: Subtask to perform, 1, 2, or 3.
1: Initiate interrupt data acquisition.
params[1]: Interrupt level (IRQ)
params[2]: Number of conversion to make.
params[3]: Offset of the data buffer

address.
params[4]: Offset of the point/gain buffer

address.
params[5]: A/D trigger mode.
0: Start A/D on each positive transition
of the IP0/TRG0 pin.
1: Use counters 1 and 2 to supply the A/D
trigger.
2: Check for end of interrupt scan.
3: Disable the interrupt operation.

Manual Number: 00650-013-13Page 5-12

AIO8-P Manual

Output:

Data: SUBTASK 1: The buffers will contain the conversions and the point/
gain data respectively.

SUBTASK 2: params[1] = 0 if scan complete, task number if still in
progress.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 3: Card does not respond.

status = 5: Point error, point list is empty.

status = 7: Invalid number of conversions, not between 1 and 32767.

status = 10: Interrupt task already active.

status = 11: Interrupt not between 2 and 7.

status = 12: Interrupt already unassigned. (SUBTASK 3)

status = 13: Invalid subtask, not 1, 2 or 3.

status = 14: Invalid trigger mode, not 1 or 2.

Example:

int task,params[5],status; /* these are globally declared
 variables */

int datbuf[100],chnbuf[100]; /* these are globally declared
 variables */

task = 9;
params[0] = 1; /* initiate interrupt scan */
params[1] = 5; /* use IRQ5 */
params[2] = 100; /* do 100 conversions on this

 scan */
params[3] = FP_OFF(datbuf); /* pass offset of data buffer */
params[4] = FP_OFF(chnbuf); /* pass offset of point/gain

 buffer */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */
params[0] = 2; /* check for end of scan process

*/
do

{
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */
}

while (params[1] != 0); /* wait until end of scan*/
/* or if you do not want to wait
 until end of scan */

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-13

params[0] = 3; /* stop interrupt process sub
task */

aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));
/* call the driver */

TASK 10: Thermocouple/Function Assignment

Provides subtasks to assign thermocouple curves and scaling factors to a given point address. A
subtask is also provided to use the thermocouple tables to linearize values passed to it.

Notes:

1) The built-in NBS tables are designed to convert A/D counts to temperature directly. When using
SUBTASK 1, the driver expects the passed counts to be multiplied by 16 if using the bipolar mode,
and multiplied by 8 if using a unipolar mode.

2) Curves are assigned to a point address by calling SUBTASK 2 with the ASCII code of one of the
curves listed in the table that follows. Also, temperature units are assigned in the same manner.

3) If reference junction compensation using the AT16-P on board sensor is desired, then assign this
sensor to the point list as the first channel of a given AT16-P (ie. 0, 16,32,48 etc). Make sure that
the TMP jumpers are installed on the AT16-P. Finally, assign the curve “T” to this point address
using SUBTASK 2. Any other point addresses on the AT16-P will now be junction compensated
automatically by the driver each time a point address is converted.

4) The reference junction circuit on the AT16-P card generates 24.4 mV/°C. The counts read in at a
gain of 1 are 2.44 millivolts/count. Thus, each count represents 0.1°C.

5) When thermocouple curves are assigned to a point address, it is also required to set that point address
to a particular gain using TASK 4. These gains are presented in the following table. Note that two
gain codes are presented for each thermocouple type, the one you use will depend on the setting of
the G/2 switch on the AT16-P. If G/2 is OFF, use the lower gain code, if G/2 is ON then use the
higher gain code.

Manual Number: 00650-013-13Page 5-14

AIO8-P Manual

T/C Type Gain Gain Code µVolts/Count

b 200 5/6 12.207

e 50 3/4 48.828

j 100 4/5 24.414

k 50 3/4 48.828

r 200 5/6 12.207

s 200 5/6 12.207

t 200 5/6 12.207

RTD Type Gain Gain Code µVolts/Count

a 100 4/5 24.414

u 100 4/5 24.414

6) Temperature is returned in increments of 1/10th degree. For example, 100 degrees would be returned
as 1000.

7) SUBTASK 3 can be used to force the driver to return values in units determined by the user rather
than counts. For example, you might desire values returned in millivolts. In such a case, assuming
the bipolar mode, scale factors of -5000 and +5000 would be passed in the call to SUBTASK 3.

8) For platinum RTD’s, there are two curves; “a” for sensors with 392 alpha and “u” for sensors with
385 alpha.

9) TASK 10 does not initiate any conversions, but sets up functions that will be performed automati-
cally whenever conversion are done using tasks 6, 7, 8, 9 or 16.

Input:

params[0]: Subtask to perform, 1, 2, 3 or 4.

1: Perform linearization of the given data.
params[1]: ASCII code for lower case letter of curve, or

upper case T for reference junction.
params[2]: counts (see note 1)

2: Assign thermocouple curve to a point address.
params[1]: point address
params[2]: ASCII code for lower case letter of curve, or

upper case T for reference junction.
params[3]: ASCII code for upper case letter of the desired

temperature units, C or F.

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-15

3: Assign scaling factor to a point address.
params[1]: point address
params[2]: Lower scaling term.
params[3]: Upper scaling term.

4: Replicate a point address function assignment to a range
of point addresses.
params[1]: source address to replicate
params[2]: first point address in destination range
params[3]: last point address in destination range.

Output:

Data: SUBTASK 1:
params[3]: temperature in tenths of °F.
params[4]: temperature in tenths of °C.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 20, or driver not initialized.

status = 5: Point error, point address out of range.

status = 13: Invalid subtask, not between 1 and 4.

status = 16: Invalid curve.

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 10; /* linearize the passed value
*/

params[0] = 1; /* manual linearization subtask
*/

params[1] = ‘t’; /* for t type thermocouple */
params[2] = 1801; /* counts * 16 at gain of 200 */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */
/*values returned in params[3]
 and params[4] */

/* assign curve to a point
 address */

params[0] = 2; /* curve assignment subtask */
params[1] = 0; /* first point address on first

 AT16-P */
params[2] = ‘T’; /* T for reference junction */
params[3] = ‘F’; /* F for degrees F */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

/* assign a range of ±5 volts in
 millivolt increments to a
 point address.*/

Manual Number: 00650-013-13Page 5-16

AIO8-P Manual

params[0] = 3; /* range assignment subtask */
params[1] = 22; /* point address to assign */
params[2] = -5000; /* lower range */
params[3] = 5000; /* upper range */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

/* replicate the assignment for
 point address 22 to point
 addresses 23-40 */

params[0] = 4; /* replication subtask */
params[1] = 22; /* source point address to

 replicate */
params[2] = 23; /* lower point address in

 destination range */
params[3] = 40; /* upper point address in

 destination range */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 11: Reset Functions

Performs various reset functions on the point list and function/curve assignment tables. Also pro-
vides a subtask to allow for the sample and hold settle time, in higher speed computers.

Notes:

1) SUBTASK 5 is provided to set the sample and hold settle time. High speed 80286 and 80386
computers often will start a conversion before the sample and hold has had time to settle after
changing a channel on the AT16-P. A value of 25-50 for the delay loop is usually sufficient for an
80386 machine.

Input:

params[0]: Subtask to perform, 1, 2, 3, 4 or 5.

1: Reset the point list index to first point address in the
point list.
2: Clears all point addresses from the point list.
3: Resets the point list to the default conditions, as
described in TASK 0.
4: Clears all curve and scaling assignments.
5: Set the sample and hold settle time.

params[1]: settle time count

Output:

Data: None.

Error Codes:

status = 0: No error.

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-17

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 15: Invalid reset sub task, not between 0 and 5.

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 11;
params[0] = 5; /* set settle time sub task */
params[1] = 50; /* settle time count of 50 */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 12: Digital Output

Writes to the digital output bits.

Notes:

1) Output values are not checked for proper range. If a value greater than fifteen is sent, the driver will
only output fifteen, which is the lower four bits.

2) If an AT16-P is being used, this task should not be called, as these digital output bits are used to set
the channel on the AT16-P.

Input:

params[0]: Value to output, 0 to 15 decimal.

Output:

Data: None.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 12;
params[0] = 15; /* set first 4 output bits high

*/
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 13: Digital Input

Reads the digital input bits.

Manual Number: 00650-013-13Page 5-18

AIO8-P Manual

Notes:

1) Returns the state of the three digital input bits.

Input:

None.

Output:

Data: params[1]: Digital input value.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 13;
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 14: Counter/Timer Setup

Load the given counter/timer with a count value and mode.

Notes:

1) For a complete discussion of the counter/timers, see Chapter 7: Prgramming Interval Timer.

2) If the AT16-P is in the programmable gain mode, this task cannot be called. The driver will return
error code 18 if you call this task, after having called TASK 0 with the AT16-P mode set to
programmable.

Input:

params[0]: counter number 0, 1 or 2.
params[1]: counter mode, between 0 and 5.
params[2]: counter load count.

Output:

Data: None.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-19

status = 8: Invalid counter, not 0, 1 or 2.

status = 9: Invalid counter mode, not between 0 and 5.

status = 18: AT16-P programmable mode set.

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 14;
params[0] = 1; /* counter 1 */
params[1] = 3; /* counter mode 3, square wave

 generator */
params[2] = 100; /* counter load value, acts as

 divide by 100 */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */

TASK 15: Read Counter/Timer Count

Reads the count of the given counter/timer.

Notes:

1) For a complete discussion of the counter/timers, see Chapter 7: Programmable Interval Timer.

2) Counter/timer is latched before read.

3) If the AT16-P is in the programmable gain mode, this task cannot be called. The driver will return
error code 18 if you call this task, after having called TASK 0 with the AT16-P mode set to
programmable.

Input:

params[0]: counter number 0, 1 or 2.

Output:

Data: params[1]: counter/timer count.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 8: Invalid counter, not 0, 1 or 2.

Example:

int task,params[5],status; /* these are globally declared
 variables */

task = 15;
params[0] = 1; /* counter 1 */

Manual Number: 00650-013-13Page 5-20

AIO8-P Manual

aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));
/* call the driver */

TASK 16: Measure Frequency

Measures an unknown frequency.

Notes:

1) All calculations performed by the driver, as well as quantities presented in this task assume a
4.77MHz bus clock. If you have a different clock speed, try calibrating the task with a known
frequency until you have discovered the proper value to pass and the conversion value.

2) If the AT16-P is in the programmable gain mode, this task cannot be called. The driver will return
error code 18 if you call this task, after having called TASK 0 with the AT16-P mode set to
programmable.

3) Counter 2 is programmed to output at a 1mS pulse rate. The load value is 2385, which gives a 1mS
pulse rate for a 4.77 MHz bus clock. To determine the output value for your computer, divide
4.77Mhz by your bus clock to find the pulse rate. The output of counter 2 should be connected to
the input of counter 1 by connecting pin 4 to pin 6 on the external I/O connector.

4) The output of counter 1 is connected to the gate of counter 0 and to IP2 by connecting pins 5, 21 and
26 together. The unknown frequency is connected to counter 0’s clock by connecting it between pin
2 and common(pin 11 or 28). The value passed in params[0] is loaded into counter 1 and provides
a multiple of the pulse rate calculated in 3).

5) The return value from the task is the number of counts during the time interval from 4). The frequency
is computed using the following equation:

frequency = params[1] * 1000

params[0] * pulse rate (in mS)

6) Accuracy of 0.1% is achieved with this task. For better accuracy with lower frequencies, providing
the waveform is symmetrical, use TASK 17.

Input:

params[0]: pulse rate multiples

Output:

Data: params[1]: number of counts during the time from 4).

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 18: AT16-P in programmable gain mode.

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-21

Example:

int task,params[7],status; /* these are globally declared
 variables */double frequency;

task = 16;
params[0] = 100 /* 100 ms pulse rate, 4.77 Mhz

 bus clock */
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */
frequency = (double) (params[1] * 1000)/params[0];

/* frequency calculation */

TASK 17: Measure Pulse Width

Measure an unknown pulse width with counter 2.

Notes:

1) If the AT16-P is in the programmable gain mode, this task cannot be called. The driver will return
error code 18 if you call this task, after having called TASK 0 with the AT16-P mode set to
programmable.

2) The unknown signal should be connected to pin 23 and pin 26.

3) The maximum pulse width that can be measured is 65.54mS.

4) Multiply the result returned in params[0] by the reciprocal of your bus clock frequency divided by
2 to get the actual pulse width.

Input:

None

Output:

Data: params[0]: Change in counts.

Error Codes:

status = 0: No error.

status = 1: Invalid task number, task > 17, or driver not initialized.

status = 18: AT16-P is in programmable gain mode.

Example:

int task,params[5],status; /* these are globally declared
 variables */

double
task = 17;
aio8drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status));

/* call the driver */
width = (double) params[0] * 0.41905;

Manual Number: 00650-013-13Page 5-22

AIO8-P Manual

Summary of Error Codes

1: Invalid task number: The task number does not fall within the range of 0 through 17. This error code
also occurs if any task is selected before a successful initialization with TASK 0.

2: Invalid base address: The base I/O address does not fall within the range of 100 hex through 3F8 hex.

3: A/D failed: The EOC (end-of-conversion) signal did not change state. This is usually because the
base address has not been set properly.

4: Point list is full: The point list can only hold 128 entries.

5: Invalid point address: The point address does not fall within the range of 0 through 127.

6: Invalid gain code: The gain code does not fall within the range of 0 through 8.

7: Invalid TASK 11 subtask: The subtask does not fall within the range of 0 through 5.

8: Invalid counter/timer number: The counter/timer number is not 0, 1 or 2.

9: Invalid mode: The counter/timer mode does not fall within the range of 0 through 5.

10: Interrupt process already set: The interrupt process can only be set up once. A subsequent request
has been made to set up the interrupt process without previously resetting the mode.

11: Invalid interrupt number: The interrupt number does not fall within the range of 2 through 7.

12: No interrupt process is set: A request has been made to reset an interrupt process that has not
previously been set.

13: Invalid SUBTASK number: SUBTASK specified is outside the valid range for a given task.

14: Invalid data buffer: Data buffer is not valid for interrupt driven data acquisition.

15: Invalid AT16-P mode: AT16-P mode should be 0(programmable gains) or 1(manual gains).

16: Invalid curve specified: The curve code letter specified is not a valid code.

Chapter 5: AIO8-P Driver Reference

Manual Number: 00650-013-13 Page 5-23

17: Not used.

18: An attempt to use a task that requires the AT16-P to be in programmable gain mode has been called
when the AT16-P was set for manual gain mode.

19: An attempt to use a task that requires the AT16-P to be in manual gain mode has been called when
the AT16-P was set for programmable gain mode.

20: Error opening configuration file.

21: Error reading configuration file.

22: Configuration file data are not correct.

Manual Number: 00650-013-13Page 5-24

AIO8-P Manual

This page intentionally left blank

Chapter 6: A/D Converter Applications

Manual Number: 00650-013-13 Page 6-1

Chapter 6: A/D Converter Applications

Connecting Analog Inputs

The AIO8-P provides eight channels of single-ended input. Single-ended configuration means that
you have only one input relative to ground. A differential input provides two inputs and the signal
corresponds to the voltage difference between these two inputs. The single-ended configuration is
suitable only for “floating” sources; i.e., a signal source that does not have any connection to
ground at the source. To use differential connections to the AIO8-P, the AT16-P multiplexer card
must be added. The AT16-P supplies 16 channels of differential input.

Thus, if the signal source has one side connected to a local ground, the AIO8-P/AT16-P combina-
tions should be used. A differential input responds only to difference signals between the high and
low inputs. In practice, the signal source ground will not be at exactly the same voltage as the
computer ground where the AIO8-P/AT16-P combination is because the two grounds are con-
nected through ground returns of the equipment and the building wiring. The difference between
the ground voltages forms a common mode voltage (i.e., a voltage common to both inputs) that a
differential input rejects up to a certain limit. In the case of the AIO8-P/AT16-P combination, the
common mode voltage limit is ±10V.

It’s important to understand the difference between input types, how to use them effectively, and
how to avoid ground loops. Misuse of inputs is the most common difficulty that users experience
in applying and obtaining the best performance from data acquisition systems.

Noise Interference

Noise is generally introduced into analog measurements from two sources: (a) ground loops and
(b) external noise. In both cases, use of good wiring practice will reduce and sometimes eliminate
the noise. A key point with regard to ground or return wiring is that in an analog/digital “system”,
digital circuits should have a separate ground system from analog circuits with only a single com-
mon point. The reason for separate ground busses is that digital circuits, by their very nature,
generate considerable high frequency noise as they rapidly change state.

Ground loops occur when AC noise and DC offset are added in series with a grounded signal
source if the source ground is at a different potential than the A/D’s analog ground. If there is an
ohmic resistance between the source ground and the A/D’s ground, the resultant current flow causes
a voltage to be developed and a “ground loop” exists. If the signal is measured in a single-ended
mode, that voltage is added to the source signal thereby creating an error. The best way to avoid
ground loop errors is to use good wiring practice as described above. If this is not possible, use of
a differential measurement mode will minimize errors.

Input Range and Resolution Specifications

Resolution of an A/D converter is usually specified in number of bits; i.e. 8 bits, 12 bits, etc. Input
range is specified in volts; i.e. 0-5V, ±10V, ±20mV, etc. To determine the voltage resolution of an
A/D converter, simply divide the full scale voltage range by the number of parts of resolution. For
example, for a bipolar range of ±5V, a 12-bit A/D resolves the input into 4096 parts. Thus, voltage
resolution (the “weight” of one bit) is 2.44mV.

Manual Number: 00650-013-13Page 6-2

AIO8-P Manual

If an amplifier is incorporated in the circuit providing gain, then divide the voltage resolution by
the gain of the amplifier, then divide by 4096. For example, a 12-bit A/D with ±5V full-scale input
range and an amplifier gain of 100 will provide an overall input resolution of about 24.4µV.

Current Measurements

Current signals can be converted to voltage for measurement by the A/D converter by addition of a
shunt resistor installed across the input terminals. For example, to accommodate 4-20mA current
transmitter inputs, connect a 250Ù shunt resistor across the A/D input terminals. The resultant 1-
5V signal can then be measured. The Industrial Computer Source UTB-K screw terminal acces-
sory board, for example, includes a breadboard area with plated through holes that allow insertion
of shunt resistors.

If an AT16-P multiplexer expansion card is being used, pre-wired pads are provided on the AT16-
P. If all the inputs are 4-20mA range current inputs from current transmitters, then there is a
configuration of the multiplexer expansion board called AT16-PI. That model includes the shunt
resistors and has offset and gain set such that the “live zero” is compensated for and the full 12-bit
resolution of the A/D is realized.

Note: Accuracy of measurement will be directly affected by the accuracy of these resistors. Ac-
cordingly, precision resistors should be used. Also, if the ambient temperature will vary signifi-
cantly, these precision resistors should be low-temperature-coefficient wire-wound resistors.

Measuring Large Voltages

Voltages larger than the input range of the A/D can be measured by using a voltage divider. As
above, it is necessary to use precision resistors. Also if the raw voltage is a direct analog of a
parameter being measured, then it will be necessary to apply a scale factor in software in order to
arrive at the correct engineering units.

Adding More Analog Inputs

You can add sub-multiplexers to any or all of the analog inputs of AIO8-P. Industrial Computer
Source’s AT16-P provides capability for 16 channels per input plus a common instrumentation
amplifier. Up to eight AT16-P’s can be added to one AIO8-P providing a total input capability up
to 128 channels.

Chapter 6: A/D Converter Applications

Manual Number: 00650-013-13 Page 6-3

Precautions - Noise, Ground Loops, and Overloads

Unavoidably, data acquisition applications involve connecting external things to the computer.
DO NOT get inputs mixed up with the AC line. An inadvertent short can instantly cause extensive
damage. Industrial Computer Source cannot accept liability for this kind of accident. As an aid to
avoid this problem:

A. Avoid direct connection to the AC line.

B. Make sure that all connections are secure so that signal wires are not likely to come loose and short
to high voltages.

C. Use isolation amplifiers and transformers where necessary. There are two types of ground
connections on the rear connector of AIO8-P. These are called Power Ground and Low Level
Ground. Power ground is the noisy or dirty ground that is meant to carry all digital signals and heavy
(power supply) currents. Low Level Ground is the signal ground for all analog input functions. It
is only meant to carry signal currents (less than a few milliamperes) and is the ground reference for
the A/D converter. Due to connector contact resistance and cable resistance there may be many
millivolts difference between the two grounds even though they are connected together and to the
computer and power line grounds on the AIO8-P card.

Manual Number: 00650-013-13Page 6-4

AIO8-P Manual

This page intentional;ly left blank

Chapter 7: Programmable Interval Timer

Manual Number: 00650-013-13 Page 7-1

Chapter 7: Programmable Interval Timer

The AIO8-P contains a type 8253 programmable counter/timer which allows you to implement
such functions as a Real-Time Clock, Event Counter, Digital One-Shot, Programmable Rate Gen-
erator, Square-Wave Generator, Binary Rate Multiplier, Complex Wave Generator, and/or a Motor
Controller. The 8253 is a flexible but powerful device that consists of three independent, 16-bit,
presettable, down counters. Each counter can be programmed to any count between 1 or 2 and
65,535 in binary format, depending on the mode chosen.

On the AIO8-P these three counters are designated Counter #0, Counter #1, and Counter #2. Counter
#0 and counter #1 have the gate, output and clock connections fully accessible via the I/O connec-
tor. Counter #2 receives clock inputs from a 1/2 multiple of the PC bus clock. The output and gate
of counter #2 is also available at the I/O connector. If the AT16-P is being used with program-
mable gain, then all counters are required for setting the gains on the AT16-P.

Operational Modes

The 8253 modes of operation are described in the following paragraphs to familiarize you with the
versatility and power of this device. For those interested in more detailed information, a full
description of the 8253 programmable interval timer can be found in the Intel (or equivalent manu-
facturers) data sheets. The following conventions apply for use in describing operation of the 8253 :

Clock: A positive pulse into the counter’s clock input.

Trigger: A rising edge input to the counter’s gate input.

Counter Loading: Programming of a binary count into the counter.

MODE 0: Pulse on Terminal Count

After the counter is loaded, the output is set low and will remain low until the counter decrements to
zero. The output then goes high and remains high until a new count is loaded into the counter. A
trigger enables the counter to start decrementing. This mode is commonly used for event counting
with Counter #0.

MODE 1: Retriggerable One-Shot

The output goes low on the clock pulse following a trigger to begin the one-shot pulse and goes high
when the counter reaches zero. Additional triggers result in reloading the count and starting the
cycle over. If a trigger occurs before the counter decrements to zero, a new count is loaded. Thus,
this forms a re-triggerable one-shot. In mode 1, a low output pulse is provided with a period equal
to the counter countdown time.

Manual Number: 00650-013-13Page 7-2

AIO8-P Manual

MODE 2: Rate Generator

This mode provides a divide-by-N capability where N is the count loaded into the counter. When
triggered, the counter output goes low for one clock period after N counts, reloads the initial count,
and the cycle starts over. This mode is periodic, the same sequence is repeated indefinitely until the
gate input is brought low. This mode also works well as an alternative to mode 0 for event counting.

MODE 3: Square wave Generator

This mode operates periodically like mode 2. The output is high for half of the count and low for the
other half. If the count is even, then the output is a symmetrical square wave. If the count is odd,
then the output is high for (N+1)/2 counts and low for (N-1)/2 counts. Periodic triggering or
frequency synthesis are two possible applications for this mode. Note that in this mode, to achieve
the square wave, the counter decrements by two for the total loaded count, then reloads and decre-
ments by two for the second part of the wave form.

MODE 4: Software Triggered Strobe

This mode sets the output high and, when the count is loaded, the counter begins to count down.
When the counter reaches zero, the output will go low for one input period. The counter must be
reloaded to repeat the cycle. A low gate input will inhibit the counter. This mode can be used to
provide a delayed software trigger for initiating A/D conversions.

MODE 5: Hardware Triggered Strobe

In this mode, the counter will start counting after the rising edge of the trigger input and will go low
for one clock period when the terminal count is reached. The counter is retriggerable. The output
will not go low until the full count after the rising edge of the trigger.

Programming

On the AIO8-P, the 8253 counters occupy the following addresses:

BASE ADDRESS + 4: Read/Write Counter #0

BASE ADDRESS + 5: Read/Write Counter #1

BASE ADDRESS + 6: Read/Write Counter #2

BASE ADDRESS + 7: Write to Counter Control register

The counters are programmed by writing a control byte into a counter control register at BASE
ADDRESS + 7. The control byte specifies the counter to be programmed, the counter mode, the
type of read/write operation, and the modulus. The control byte format is as follows:

B7 B6 B5 B4 B3 B2 B1 B0

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

Chapter 7: Programmable Interval Timer

Manual Number: 00650-013-13 Page 7-3

-SC0-SC1: These bits select the counter that the control byte is destined for.

SC1 SC0 Function

0 0 Program Counter 0

0 1 Program Counter 1

1 0 Program Counter 2

1 1 Illegal

-RW0-RW1: These bits select the read/write mode of the selected counter.

RW1 RW0 Function

0 0 Counter Latch Command

0 1 Read/Write LS Byte

1 0 Read/Write MS Byte

1 1 Read/Write LS Byte, then MS Byte

-M0-M2: These bits set the operational mode of the selected counter.

Mode M2 M1 M0

0 0 0 0

1 0 0 1

2 X 1 0

3 X 1 1

4 1 0 0

5 1 0 1

-BCD: Set the selected counter to count in binary (BCD bit = 0) or BCD (BCD bit = 1).

Manual Number: 00650-013-13Page 7-4

AIO8-P Manual

Reading and Loading the Counters

If you attempt to read an active counter, you will most likely get erroneous data. This is partly
caused by carries rippling through the counter during the read operation. Also, the low and high
bytes are read sequentially rather than simultaneously and, thus, it is possible that carries will be
propagated from the low to the high byte during the read cycle. To circumvent these problems, you
should perform a counter-latch operation in advance of the read cycle. To do this, load the RW1 and
RW2 bits with zeroes. This instantly latches the count of the selected counter (selected via the SC1
and SC0 bits) in a 16-bit hold register. A subsequent read operation on the selected counter returns
the held value. Latching is the best way to read an active counter without disturbing the counting
process. You can only rely on directly read counter data if the counting process is suspended while
reading, by bringing the gate low, or by halting the input pulses.

For each counter you must specify in advance the type of read or write operation that you intend to
perform. You have a choice of loading/reading (a) the high byte of the count, or (b) the low byte of
the count, or (c) the low byte followed by the high byte.

Programming Examples

Using Counter #0 as a Pulse Counter

Note that the counters are “down” counters so, when resetting them, it’s better to load them with a
full count value of 65,535 rather than zero.

outportb(BASEADDRESS + 7,0x30); /* counter 0, mode 0 */
outportb(BASEADDRESS + 4,0xff); /* counter 0 low load byte

*/
outportb(BASEADDRESS + 4,0xff); /* counter 0 high load

byte */

Reading Counter #0

outportb(BASEADDRESS + 7,0x00); /* counter 0, latch
command */
/* read in both bytes of
the latched value and
combine into an integer */

value = inportb(BASEADDRESS + 4) + (inportb(BASEADDRESS + 4) * 256;

Chapter 7: Programmable Interval Timer

Manual Number: 00650-013-13 Page 7-5

Programming Examples using the AIO8-PDRV Driver

In practice, TASKS 14 and 15 of the AIO8-PDRV driver can be used to perform equivalent opera-
tions to the above examples with fewer programming steps.

For counting pulses, the counter configuration is not of great importance because you will only be
using the countdown capabilities of the counter. Mode 2 is as good as any other choice for pulse
counting. As in the previous example, load Counter #0 with a full scale count of 65,535 (hex FFFF)
using TASK 14 of the driver. While loading the counter, counting can be inhibited by holding the
gate input, pin 21, low.

task = 14; /* counter setup mode task */
params[0] = 0; /* setup counter #0 */
params[1] = 2; /* set counter #0 mode to 2 */
params[2] = 0xffff; /* set counter #0 count to ffff */

/* hex (65535) */
aio8drv(FP_OFF(task),FP_OFF(params),FP_OFF(status));

/* call the driver */

Next, apply the number of pulses to be counted. The gate input, pin 21, must now be high or can be
taken high for some fixed time interval to control the number of pulses counted. You can read the
new count using TASK 15 of the driver:

task = 15; /* readcounter count task */
params[0] = 0; /* read counter #0 */
aio8drv(FP_OFF(task),FP_OFF(params),FP_OFF(status));

/* call the driver */

Upon return, params[1] contains the counter contents.

Generating Square Waves of Programmed Frequency

Frequency of output is a direct function of the frequency of the clock input and of the count loaded
into the counter. The minimum count (or divisor) is 2 and the maximum is 65535.

Calculating what divisor to use for a specific output frequency is straightforward. If, for example,
you desire a 1KHz output and your clock is 5MHz, divide by 1000 and find that the count to be
loaded into counter #0 should by 5000.

Manual Number: 00650-013-13Page 7-6

AIO8-P Manual

Measuring Frequency and Period

TASK 16 of the driver describes measuring frequency and TASK 17 describes measuring pulse
width.

Generating Time Delays

There are four methods of using counter #0 or counter #1 to generate programmable time delays.

Pulse Terminal Count

After loading, the counter output goes low. Counting is enabled when the gate goes high. The
counter output will remain low until the count reaches zero, at which time the counter output goes
high. The output will remain high until the counter is reloaded by a programmed command. If the
gate goes low during countdown, counting will be disabled as long as the gate input is low.

Programmable One-Shot

The counter need only be loaded once. The time delay is initiated when the gate input goes high. At
this point the counter output goes low. If the gate input goes low, counting continues but a new cycle
will be initiated if the gate input goes high again before the timeout delay has expired; i.e., is re-
triggerable. At the end of the timeout, the counter reaches zero and the counter output goes high.
That output will remain high until re-triggered by the gate input.

Software Triggered Strobe

This is similar to Pulse-on-Terminal-Count except that, after loading, the output goes high and only
goes low for one clock period upon timeout. Thus, a negative strobe pulse is generated a pro-
grammed duration after the counter is loaded.

Hardware Triggered Strobe

This is similar to Programmable-One-Shot except that when the counter is triggered by the gate
going high, the counter output immediately goes high, then goes low for one clock period at timeout,
producing a negative-going strobe pulse. The timeout is re-triggerable; i.e., a new cycle will com-
mence if the gate goes high before a current cycle has timed out.

Appendix A: Linearization

Manual Number: 00650-013-13 Page A-1

Appendix A: Linearization

A common requirement encountered in data acquisition is to linearize or compensate the output of
non-linear transducers such as thermocouples, flowmeters, etc. The starting point for any lineariz-
ing algorithm is a knowledge of the calibration curve (input/output behavior) of the transducer.
This may be derived experimentally or may be available in manufacturer’s data or standard tables.

There are several approaches to linearization. The two most common are piecewise linearization
using look-up tables, and the use of a mathematical function to approximate the non-linearity.
Amongst the mathematical methods, polynomial expansion is one of the easiest to implement.
The utility program, POLY.EXE, allows you to generate up to a 10th order polynomial approxima-
tion. For most practical applications, a fifth-order polynomial approximation is usually adequate.

Before you start the program have the desired input/output data or calibration data handy. This will
be in the form of x and f(x) values where x is the input to your system and f(x) is the resulting
output.

To run the program, type POLY and ENTER at the command line. The program will then prompt
you for the desired order of the polynomial, then the number of pairs that you wish to use to
generate the polynomial. You then enter the data pairs and the polynomial is computed and dis-
played.

For example, given the following data points, let’s generate a 5th order polynomial to approximate
this function:

x 0 1 2 3 4 5 6 7 8 9 10

f(X) 3 2 3 5 3 4 3 2 2 3 2

The order of the polynomial that you desire will be 5 and the number of data points that you enter
will be 11. After the data points are entered, the program gives the following output:

For the polynomial:

f(x) = C(0) + C(1)x1 + C(2)x2 + C(3)x3 + C(4)x4 + C(5)x5

The coefficients will be:

COEFFICIENT (5) : -0.003151

COEFFICIENT (4) : 0.081942

COEFFICIENT (3) : -0.740668

COEFFICIENT (2) : 2.635998

COEFFICIENT (1) : -2.816607

COEFFICIENT (0) : 2.956044

QUALITY OF SOLUTION (sum of the errors squared): 2.797989

Manual Number: 00650-013-13Page A-2

AIO8-P Manual

The goal is to make the quality as close to 0 as possible.

Note the quality of solution. The program checks the resulting polynomial with the data pairs that
you entered. It computes the f(x) values for each x value entered using the polynomial, subtracts
the result from the supplied value of f(x), and then squares the result. The squared results are then
summed to compute the QUALITY. If the computed f(x) values were exact, this value would be 0.
But, since this is an approximation, this value will usually be something greater than 0.

The QUALITY can be used to indicate how good a particular solution is. If the range of points is
very wide or if the points make transition from negative to positive values, then QUALITY will
suffer accordingly. For these cases, it may be better to use multiple polynomials rather than just
one.

As an example, the following data are taken from the NIST tables for type T thermocouples:

x -6.258 -5.603 -4.468 -3.378 -1.182 0 2.035

f(X) -270 -200 -150 -100 -50 0 50

4.277 6.702 9.286 12.01 14.86 17.82 20.87

100 150 200 250 300 350 400

If we take all the data and compute one 5th order polynomial, the QUALITY is 473.543732; not
very good. Now divide the data into two polynomials; one on the negative side including 0 and one
on the positive side also using 0. The results will show a QUALITY of 90.732620 for the negative
side and a QUALITY of 0.005131 for the positive side. Thus, by using two polynomials, you have
made the positive side very accurate and dramatically improved the negative side.

Accuracy of the negative side can be further improved by adding points. For example, add the
following pairs to the negative side of the polynomial for a type T thermocouple:

x -6.181 -5.167 -4.051 -2.633

f(X) -250 -175 -125 -75

If you run the new data, the QUALITY is improved to 69.555611, but still perhaps not as good as
you would like.

Thus, you may use the QUALITY as a means to determine how good the polynomial is. You can
experiment with both order and number of data points until you are satisfied with the solution.
Incidentally, this example also shows that the smaller the range of x values, the better the solution.

The computational method used is a least squares solution using Gaussian Elimination with partial
pivoting to improve accuracy.

Appendix B: Cabling and Connector Information

Manual Number: 00650-013-13 Page B-1

Appendix B: Cabling and Connector Information

Connections are made to the AIO8-P card via a 37-pin D type connector that extends through the
back of the computer case. The female mating connector can be a Cannon #DC-37S for soldered
connections or insulation displacement flat cable types such as AMP #745242-1 may be used. The
wiring may be directly from the signal sources or may be on ribbon cable from screw terminal
accessories such as Industrial Computer Source part number UTB-K. The pin assignments are as
follows:

Pin # Name Function

1 +12VDC +12VDC from the computer Bus

2 CTR0 Clk Counter 0 Clock

3 CTR0 Out Counter 0 Output, programmable gain control for AT16-P (LSB)

4 CTR1 Clk Counter 1 Clock

5 CTR1 Out Counter 1 Output, programmable gain control for AT16-P (mid bit)

6 CTR2 Out
Counter 2 Output, programmable gain control for the AT16-P
(MSB)

7 OP0 LSB Digital Output, sub-multiplexer channel select

8 OP1 Bit 1 Digital Output, sub-multiplexer channel select

9 OP2 Bit 2 Digital Output, sub-multiplexer channel select

10 OP3 MSB Digital Output, sub-multiplexer channel select

11 Dig. Com Power (Digital) ground

12 LL Gnd Low Level (Analog) Ground

13 LL Gnd Low Level (Analog) Ground

14 LL Gnd Low Level (Analog) Ground

15 LL Gnd Low Level (Analog) Ground

16 LL Gnd Low Level (Analog) Ground

17 LL Gnd Low Level (Analog) Ground

18 LL Gnd Low Level (Analog) Ground

(continued on next page)

Manual Number: 00650-013-13Page B-2

AIO8-P Manual

Pin # Name Function

19 VRef +10.0VDC (220mA) A/D reference output

20 -12VDC -12VDC from the computer Bus

21 CTR0 Gate Counter 0 Gate

22 CTR1 Gate Counter 1 Gate

23 CTR2 Gate Counter 2 Gate

24 INT Interrupt input, positive edge trigger

25 IP1 Digital input, Bit 1

26 IP2 Digital input, Bit 2

27 IP3 Digital input, Bit 3

28 Dig. Com Power (Digital) Ground

29 +5VDC +5VDC from the computer Bus

30 CH7 In Channel 7 Analog Input

31 CH6 In Channel 6 Analog Input

32 CH5 In Channel 5 Analog Input

33 CH4 In Channel 4 Analog Input

34 CH3 In Channel 3 Analog Input

35 CH2 In Channel 2 Analog Input

36 CH1 In Channel 1 Analog Input

37 CH0 In Channel 0 Analog Input

Appendix C: Base Integer Variable Storage

Manual Number: 00650-013-13 Page C-1

Appendix C: Base Integer Variable Storage

Data are stored in integer variables (% type) in 2’s complement form. Each integer variable uses
16 bits or two bytes of memory. Sixteen bits of binary data is equivalent to 0 to 65,535 decimal but
the 2’s complement convention interprets the most significant bit as the sign bit so the actual range
is -32,768 to +32,767. Numbers are represented as follows:

Number
High Byte

B7 B6 B5 B4 B3 B2 B1 B0

 +32767 0 1 1 1 1 1 1 1

 +10000 0 0 1 0 0 1 1 1

 +1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

 -1 1 1 1 1 1 1 1 1

 -10000 1 1 0 1 1 0 0 0

 -32767 1 0 0 0 0 0 0 0

Number
Low Byte

B7 B6 B5 B4 B3 B2 B1 B0

 +32767 1 1 1 1 1 1 1 1

 +10000 0 0 0 1 0 0 0 0

 +1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

 -1 1 1 1 1 1 1 1 1

 -10000 1 1 1 1 0 0 0 0

 -32767 0 0 0 0 0 0 0 0

Note: Bit 7 (B7) of the high byte is the sign bit. (1=negative, 0=positive)

Integer variables are the most compact form of storage for the 12-bit data from the A/D converter
and the 16-bit data from the interval timer. Therefore, to conserve memory and disk space and to
optimize execution time, all data exchange via the CALL is through integer type variables.

Manual Number: 00650-013-13Page C-2

AIO8-P Manual

This poses a programming problem when handling unsigned numbers in the range 32,768 to 65,535.
If you wish to input or output an unsigned integer greater than 32,767, then it is necessary to work
out what its 2’s complement signed equivalent is. For example, if 50,000 decimal is to be loaded
into a 16-bit counter, an easy way to convert this to binary is to enter BASIC and execute PRINT
HEX$(50000). This returns C350 which, in binary form is: 1100 0011 0101 0000. Since the most
significant bit is a one, this would be stored as a negative integer and, in fact, the correct integer
variable value would be 50,000 - 65,536 = -15,536.

Thus, the programming steps to switch between integer and real variables for representation of
unsigned numbers between 0 and 65,535 is:

-From real variable N (where 0 <= N <= 65,535) to integer variable N%:

xxx10 IF N<=32767 THEN N% = N ELSE N% = N-65536

-From integer variable N% to real variable N:

xxx20 IF N% >= 0 THEN N=N% ELSE N = N%+65536

Declaration of Conformity

6260 Sequence Drive
San Diego, CA 92121-4371

(800) 523-2320

Industrial Computer Source declares under its own and full responsibility that the following products are
compliant with the protection requirements of the 89/336/EEC and 73/23/EEC directives.

, amended by 92/31/EEC and 93/88/EEC

Only specific models listed on this declaration and labeled with the CE logo are CE compliant.

AIO8-P

Conformity is accomplished by meeting the requirements of the following European harmonized stan-
dards:

EN 50081-1:1992 Emissions, Generic Requirements.
-EN 55022 Measurement of radio interference characteristics of information technology equipment.

EN 50082-1:1992 Immunity, Generic Requirements.
-IEC 801-2:1984 Immunity for AC lines, transients, common, and differential mode.
-IEC 801-3:1984 Immunity for radiated electromagnetic fields.
-IEC 801-4:1988 Immunity for AC and I/O lines, fast transient common mode.

EN 60950:1992 Safety of Information Technology Equipment.

Information supporting this declaration is contained in the applicable Technical Construction file
available from:

Z.A. de Courtaboeuf
16, Avenue du Québec

B.P. 712
91961 LES ULIS Cedex

August 28, 1997
Mr. Steven R. Peltier San Diego, CA
President & Chief Executive Officer

BUG REPORT

While we have tried to assure this manual is error free, it is a fact of life that works of man have
errors. We request you to detail any errors you find on this BUG REPORT and return it to us.
We will correct the errors/problems and send you a new manual as soon as available. Please
return to:

Attn: Documentation Department
P. O. Box 910557

San Diego, CA 92121-0557

Your Name: ___

Company Name: ___

Address 1: __

Address 2: __

Mail Stop: _______________________________

City: _______________________________________ State: _______ Zip: ____________

Phone: (_____) _______________

Product: AIO8-P

Manual Revision: 00650-013-13B

Please list the page numbers and errors found. Thank you!

	Table of Contents
	FOREWARD
	Guarantee
	Limited Warranty
	Return Procedure
	Limitation of Liability
	Chapter 1: Functional Description
	Analog Inputs
	Input System Expansion
	Reference Voltage Output
	Counter/Timer
	Interrupts
	Utility Software
	Enhancements
	Specifications
	How to remain CE Compliant
	Chapter 2: Software Installation
	Software Provided
	Hard Disk Installation
	Installation Program
	Findbase Routine
	Configuration File
	Base Address
	Mux Extensions
	Voltage Range
	Bipolar/Unipolar Mode
	IRQ Level
	Chapter 3: Hardware Installation
	Option Selection
	Interrupts
	Base Address
	Selecting a Base Address
	Chapter 4: Programming the AIO8-P
	AIO8-P Register Address Map
	Register Definitions
	Control Register
	Status Register
	A/D Registers
	Counter/Timer Registers
	Programming Using the Driver
	Using the Driver with Turbo or Borland C
	Using the Driver with Microsoft C
	Using the Driver with Turbo Pascal
	Using the Driver with QuickBasic
	Using the Driver with Basic
	Using the Driver with Visual Basic
	Chapter 5: AIO8-P Driver Reference
	Using the Driver 5-1
	The Point List Concept
	Other Software Features
	Task Summary
	Task Reference
	Summary of Error Codes
	Chapter 6: A/D Converter Applications
	Connecting Analog Inputs
	Noise Interference
	Input Range and Resolution Specifications
	Current Measurements
	Measuring Large Voltages
	Adding More Analog Inputs
	Precautions - Noise, Ground Loops, and Overloads
	Chapter 7: Programmable Interval Timer
	Operational Modes
	Programming
	Reading and Loading the Counters
	Programming Examples
	Programming Examples using the AIO8-PDRV Driver
	Generating Square Waves of Programmed Frequency
	Measuring Frequency and Period
	Generating Time Delays
	Pulse Terminal Count
	Programmable One-Shot
	Software Triggered Strobe
	Hardware Triggered Strobe
	Appendix A: Linearization
	Appendix B: Cabling and Connector Information
	Appendix C: Base Integer Variable Storage

